MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp2r2 Structured version   Visualization version   GIF version

Theorem simp2r2 1275
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp2r2 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)

Proof of Theorem simp2r2
StepHypRef Expression
1 simpr2 1194 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant2 1133 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  btwnconn1lem12  34387  cdlemj3  38824  jm2.27  40817  iunrelexpmin2  41280
  Copyright terms: Public domain W3C validator