Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem11 Structured version   Visualization version   GIF version

Theorem btwnconn1lem11 36115
Description: Lemma for btwnconn1 36119. Now, we establish that 𝐷 and 𝑄 are equidistant from 𝐶. (Contributed by Scott Fenton, 8-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem11 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)

Proof of Theorem btwnconn1lem11
StepHypRef Expression
1 btwnconn1lem8 36112 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩)
2 btwnconn1lem9 36113 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩)
3 btwnconn1lem10 36114 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)
41, 2, 33jca 1128 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))
54adantr 480 . . 3 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) ∧ 𝑑 = 𝐸) → (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))
6 simpr3r 1236 . . . . . . 7 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)
76adantl 481 . . . . . 6 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)
8 simpr2r 1234 . . . . . . 7 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)
98adantl 481 . . . . . 6 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)
107, 9jca 511 . . . . 5 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → (⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩))
11 opeq2 4850 . . . . . . . . . . . 12 (𝑑 = 𝐸 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐸⟩)
1211breq2d 5131 . . . . . . . . . . 11 (𝑑 = 𝐸 → (⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩))
1312anbi2d 630 . . . . . . . . . 10 (𝑑 = 𝐸 → ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ↔ (⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)))
14 opeq1 4849 . . . . . . . . . . . 12 (𝑑 = 𝐸 → ⟨𝑑, 𝑑⟩ = ⟨𝐸, 𝑑⟩)
1514breq2d 5131 . . . . . . . . . . 11 (𝑑 = 𝐸 → (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ↔ ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩))
16 opeq1 4849 . . . . . . . . . . . 12 (𝑑 = 𝐸 → ⟨𝑑, 𝐷⟩ = ⟨𝐸, 𝐷⟩)
1716breq2d 5131 . . . . . . . . . . 11 (𝑑 = 𝐸 → (⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ↔ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩))
1815, 173anbi12d 1439 . . . . . . . . . 10 (𝑑 = 𝐸 → ((⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) ↔ (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)))
1913, 18anbi12d 632 . . . . . . . . 9 (𝑑 = 𝐸 → (((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) ↔ ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))))
2019biimpar 477 . . . . . . . 8 ((𝑑 = 𝐸 ∧ ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))) → ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)))
21 simpr1 1195 . . . . . . . . . 10 (((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → ⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩)
22 simp11 1204 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
23 simp33 1212 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
24 simp31 1210 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
25 simp2r1 1276 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑑 ∈ (𝔼‘𝑁))
26 axcgrid 28895 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ → 𝑅 = 𝑃))
2722, 23, 24, 25, 26syl13anc 1374 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ → 𝑅 = 𝑃))
2821, 27syl5 34 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → 𝑅 = 𝑃))
29 opeq1 4849 . . . . . . . . . . . . . . 15 (𝑅 = 𝑃 → ⟨𝑅, 𝑄⟩ = ⟨𝑃, 𝑄⟩)
30 opeq1 4849 . . . . . . . . . . . . . . 15 (𝑅 = 𝑃 → ⟨𝑅, 𝑃⟩ = ⟨𝑃, 𝑃⟩)
3129, 30breq12d 5132 . . . . . . . . . . . . . 14 (𝑅 = 𝑃 → (⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ↔ ⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩))
32 opeq2 4850 . . . . . . . . . . . . . . 15 (𝑅 = 𝑃 → ⟨𝐶, 𝑅⟩ = ⟨𝐶, 𝑃⟩)
3332breq1d 5129 . . . . . . . . . . . . . 14 (𝑅 = 𝑃 → (⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩))
3431, 33anbi12d 632 . . . . . . . . . . . . 13 (𝑅 = 𝑃 → ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ↔ (⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)))
3530breq1d 5129 . . . . . . . . . . . . . 14 (𝑅 = 𝑃 → (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ↔ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩))
3629breq1d 5129 . . . . . . . . . . . . . 14 (𝑅 = 𝑃 → (⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ↔ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩))
3735, 363anbi12d 1439 . . . . . . . . . . . . 13 (𝑅 = 𝑃 → ((⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) ↔ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)))
3834, 37anbi12d 632 . . . . . . . . . . . 12 (𝑅 = 𝑃 → (((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) ↔ ((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))))
3938biimpac 478 . . . . . . . . . . 11 ((((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) ∧ 𝑅 = 𝑃) → ((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)))
40 simpll 766 . . . . . . . . . . . . 13 (((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → ⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩)
41 simp32 1211 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
42 axcgrid 28895 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ → 𝑃 = 𝑄))
4322, 24, 41, 24, 42syl13anc 1374 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ → 𝑃 = 𝑄))
4440, 43syl5 34 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → 𝑃 = 𝑄))
45 simprlr 779 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)
46 simpr3 1197 . . . . . . . . . . . . . . . . . . . . 21 (((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩)) → ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩)
47 simp2l2 1274 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
48 axcgrid 28895 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩ → 𝑑 = 𝐷))
4922, 25, 47, 24, 48syl13anc 1374 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩ → 𝑑 = 𝐷))
5046, 49syl5 34 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩)) → 𝑑 = 𝐷))
5150imp 406 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩))) → 𝑑 = 𝐷)
5251opeq2d 4856 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩))) → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
5352breq2d 5131 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝐷⟩))
54 simp2l1 1273 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
55 cgrcomlr 36016 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝑃, 𝐶⟩Cgr⟨𝐷, 𝐶⟩))
5622, 54, 24, 54, 47, 55syl122anc 1381 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝑃, 𝐶⟩Cgr⟨𝐷, 𝐶⟩))
57 cgrcom 36008 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐶⟩Cgr⟨𝐷, 𝐶⟩ ↔ ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
5822, 24, 54, 47, 54, 57syl122anc 1381 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐶⟩Cgr⟨𝐷, 𝐶⟩ ↔ ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
5956, 58bitrd 279 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
6059adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
6153, 60bitrd 279 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
6245, 61mpbid 232 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩))) → ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩)
6362ex 412 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩)) → ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
64 opeq2 4850 . . . . . . . . . . . . . . . . . 18 (𝑃 = 𝑄 → ⟨𝑃, 𝑃⟩ = ⟨𝑃, 𝑄⟩)
6564breq1d 5129 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑄 → (⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ↔ ⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩))
6665anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑄 → ((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ↔ (⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)))
6764breq1d 5129 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑄 → (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ↔ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩))
6864breq2d 5131 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑄 → (⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩ ↔ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))
6967, 683anbi23d 1441 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑄 → ((⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩) ↔ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)))
7066, 69anbi12d 632 . . . . . . . . . . . . . . 15 (𝑃 = 𝑄 → (((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩)) ↔ ((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))))
71 opeq1 4849 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑄 → ⟨𝑃, 𝐶⟩ = ⟨𝑄, 𝐶⟩)
7271breq2d 5131 . . . . . . . . . . . . . . 15 (𝑃 = 𝑄 → (⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ↔ ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
7370, 72imbi12d 344 . . . . . . . . . . . . . 14 (𝑃 = 𝑄 → ((((⟨𝑃, 𝑃⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑃⟩)) → ⟨𝐷, 𝐶⟩Cgr⟨𝑃, 𝐶⟩) ↔ (((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)))
7463, 73syl5ibcom 245 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑃 = 𝑄 → (((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)))
7574com23 86 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → (𝑃 = 𝑄 → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)))
7644, 75mpdd 43 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑃, 𝑄⟩Cgr⟨𝑃, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑃, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑃, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
7739, 76syl5 34 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) ∧ 𝑅 = 𝑃) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
7877expd 415 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → (𝑅 = 𝑃 → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)))
7928, 78mpdd 43 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝑑⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝑑, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩)) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
8020, 79syl5 34 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((𝑑 = 𝐸 ∧ ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩))) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
8180exp4d 433 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑑 = 𝐸 → ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) → ((⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))))
8281com23 86 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) → (𝑑 = 𝐸 → ((⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))))
8310, 82syl5 34 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → (𝑑 = 𝐸 → ((⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))))
8483imp31 417 . . 3 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) ∧ 𝑑 = 𝐸) → ((⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝐸, 𝐷⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
855, 84mpd 15 . 2 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) ∧ 𝑑 = 𝐸) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)
86 simp2r3 1278 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
87 simprlr 779 . . . . . . 7 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → 𝐸 Btwn ⟨𝐷, 𝑑⟩)
8887adantl 481 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐸 Btwn ⟨𝐷, 𝑑⟩)
8922, 86, 47, 25, 88btwncomand 36033 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐸 Btwn ⟨𝑑, 𝐷⟩)
90 cgrcomlr 36016 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ↔ ⟨𝑃, 𝑅⟩Cgr⟨𝑑, 𝐸⟩))
9122, 23, 24, 86, 25, 90syl122anc 1381 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ↔ ⟨𝑃, 𝑅⟩Cgr⟨𝑑, 𝐸⟩))
92 cgrcom 36008 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝑅⟩Cgr⟨𝑑, 𝐸⟩ ↔ ⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩))
9322, 24, 23, 25, 86, 92syl122anc 1381 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝑅⟩Cgr⟨𝑑, 𝐸⟩ ↔ ⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩))
9491, 93bitrd 279 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ↔ ⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩))
9594adantr 480 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩ ↔ ⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩))
961, 95mpbid 232 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩)
9722, 23, 41, 86, 47, 2cgrcomand 36009 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐸, 𝐷⟩Cgr⟨𝑅, 𝑄⟩)
98 brcgr3 36064 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ↔ (⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩ ∧ ⟨𝐸, 𝐷⟩Cgr⟨𝑅, 𝑄⟩)))
9922, 25, 86, 47, 24, 23, 41, 98syl133anc 1395 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ↔ (⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩ ∧ ⟨𝐸, 𝐷⟩Cgr⟨𝑅, 𝑄⟩)))
10099adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ↔ (⟨𝑑, 𝐸⟩Cgr⟨𝑃, 𝑅⟩ ∧ ⟨𝑑, 𝐷⟩Cgr⟨𝑃, 𝑄⟩ ∧ ⟨𝐸, 𝐷⟩Cgr⟨𝑅, 𝑄⟩)))
10196, 3, 97, 100mpbir3and 1343 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩)
102 simpr1r 1232 . . . . . . . 8 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)
103102ad2antll 729 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)
104 cgrcomlr 36016 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩))
10522, 54, 24, 54, 25, 104syl122anc 1381 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩))
106 cgrcom 36008 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
10722, 24, 54, 25, 54, 106syl122anc 1381 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
108105, 107bitrd 279 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
109108adantr 480 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
110103, 109mpbid 232 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩)
1118ad2antll 729 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)
112 cgrcomlr 36016 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ↔ ⟨𝑅, 𝐶⟩Cgr⟨𝐸, 𝐶⟩))
11322, 54, 23, 54, 86, 112syl122anc 1381 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ↔ ⟨𝑅, 𝐶⟩Cgr⟨𝐸, 𝐶⟩))
114 cgrcom 36008 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝑅, 𝐶⟩Cgr⟨𝐸, 𝐶⟩ ↔ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩))
11522, 23, 54, 86, 54, 114syl122anc 1381 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑅, 𝐶⟩Cgr⟨𝐸, 𝐶⟩ ↔ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩))
116113, 115bitrd 279 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ↔ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩))
117116adantr 480 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩ ↔ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩))
118111, 117mpbid 232 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩)
119110, 118jca 511 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩))
12089, 101, 1193jca 1128 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐸 Btwn ⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ∧ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩)))
121120adantr 480 . . 3 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) ∧ 𝑑𝐸) → (𝐸 Btwn ⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ∧ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩)))
122 simpr 484 . . 3 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) ∧ 𝑑𝐸) → 𝑑𝐸)
123 brofs2 36095 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨⟨𝑑, 𝐸⟩, ⟨𝐷, 𝐶⟩⟩ OuterFiveSeg ⟨⟨𝑃, 𝑅⟩, ⟨𝑄, 𝐶⟩⟩ ↔ (𝐸 Btwn ⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ∧ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩))))
124123anbi1d 631 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑑, 𝐸⟩, ⟨𝐷, 𝐶⟩⟩ OuterFiveSeg ⟨⟨𝑃, 𝑅⟩, ⟨𝑄, 𝐶⟩⟩ ∧ 𝑑𝐸) ↔ ((𝐸 Btwn ⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ∧ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩)) ∧ 𝑑𝐸)))
125 5segofs 36024 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑑, 𝐸⟩, ⟨𝐷, 𝐶⟩⟩ OuterFiveSeg ⟨⟨𝑃, 𝑅⟩, ⟨𝑄, 𝐶⟩⟩ ∧ 𝑑𝐸) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
126124, 125sylbird 260 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (((𝐸 Btwn ⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ∧ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩)) ∧ 𝑑𝐸) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
12722, 25, 86, 47, 54, 24, 23, 41, 54, 126syl333anc 1404 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((𝐸 Btwn ⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ∧ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩)) ∧ 𝑑𝐸) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
128127ad2antrr 726 . . 3 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) ∧ 𝑑𝐸) → (((𝐸 Btwn ⟨𝑑, 𝐷⟩ ∧ ⟨𝑑, ⟨𝐸, 𝐷⟩⟩Cgr3⟨𝑃, ⟨𝑅, 𝑄⟩⟩ ∧ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝐸, 𝐶⟩Cgr⟨𝑅, 𝐶⟩)) ∧ 𝑑𝐸) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩))
129121, 122, 128mp2and 699 . 2 (((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) ∧ 𝑑𝐸) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)
13085, 129pm2.61dane 3019 1 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐷, 𝐶⟩Cgr⟨𝑄, 𝐶⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  cop 4607   class class class wbr 5119  cfv 6531  cn 12240  𝔼cee 28867   Btwn cbtwn 28868  Cgrccgr 28869   OuterFiveSeg cofs 36000  Cgr3ccgr3 36054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-sum 15703  df-ee 28870  df-btwn 28871  df-cgr 28872  df-ofs 36001  df-ifs 36058  df-cgr3 36059
This theorem is referenced by:  btwnconn1lem12  36116
  Copyright terms: Public domain W3C validator