Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27 Structured version   Visualization version   GIF version

Theorem jm2.27 42965
Description: Lemma 2.27 of [JonesMatijasevic] p. 697; rmY is a diophantine relation. 0 was excluded from the range of B and the lower limit of G was imposed because the source proof does not seem to work otherwise; quite possible I'm just missing something. The source proof uses both i and I; i has been changed to j to avoid collision. This theorem is basically nothing but substitution instances, all the work is done in jm2.27a 42962 and jm2.27c 42964. Once Diophantine relations have been defined, the content of the theorem is "rmY is Diophantine". (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
jm2.27 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗   𝐵,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗   𝐶,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗

Proof of Theorem jm2.27
StepHypRef Expression
1 simpl1 1191 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐴 ∈ (ℤ‘2))
2 simpl2 1192 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐵 ∈ ℕ)
3 simpl3 1193 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐶 ∈ ℕ)
4 simpr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐶 = (𝐴 Yrm 𝐵))
5 eqid 2740 . . . . . . 7 (𝐴 Xrm 𝐵) = (𝐴 Xrm 𝐵)
6 eqid 2740 . . . . . . 7 (𝐵 · (𝐴 Yrm 𝐵)) = (𝐵 · (𝐴 Yrm 𝐵))
7 eqid 2740 . . . . . . 7 (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))
8 eqid 2740 . . . . . . 7 (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))
9 eqid 2740 . . . . . . 7 (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))
10 eqid 2740 . . . . . . 7 ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)
11 eqid 2740 . . . . . . 7 ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)
12 eqid 2740 . . . . . . 7 (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12jm2.27c 42964 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0)) ∧ ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))))
1413simpld 494 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → (((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0)))
1514simpld 494 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0))
1614simprd 495 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0))
1713simprd 495 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
18 oveq1 7455 . . . . . . . . . . . 12 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → (𝑗 + 1) = ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1))
1918oveq1d 7463 . . . . . . . . . . 11 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((𝑗 + 1) · (2 · (𝐶↑2))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))))
2019eqeq2d 2751 . . . . . . . . . 10 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ↔ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2)))))
21203anbi2d 1441 . . . . . . . . 9 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
2221anbi2d 629 . . . . . . . 8 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
2322anbi1d 630 . . . . . . 7 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
2423rspcev 3635 . . . . . 6 (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))) → ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
2517, 24syl 17 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
26 eleq1 2832 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔 ∈ (ℤ‘2) ↔ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)))
27263anbi3d 1442 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2))))
28 oveq1 7455 . . . . . . . . . . . . . 14 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔↑2) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2))
2928oveq1d 7463 . . . . . . . . . . . . 13 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝑔↑2) − 1) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1))
3029oveq1d 7463 . . . . . . . . . . . 12 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((𝑔↑2) − 1) · (↑2)) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2)))
3130oveq2d 7464 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))))
3231eqeq1d 2742 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ↔ ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1))
33 oveq1 7455 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔𝐴) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))
3433breq2d 5178 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))
3532, 343anbi13d 1438 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
3627, 35anbi12d 631 . . . . . . . 8 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
37 oveq1 7455 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔 − 1) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1))
3837breq2d 5178 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((2 · 𝐶) ∥ (𝑔 − 1) ↔ (2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1)))
3938anbi1d 630 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶))))
4039anbi1d 630 . . . . . . . 8 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
4136, 40anbi12d 631 . . . . . . 7 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
4241rexbidv 3185 . . . . . 6 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
43 oveq1 7455 . . . . . . . . . . . . 13 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (↑2) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))
4443oveq2d 7464 . . . . . . . . . . . 12 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2)) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2)))
4544oveq2d 7464 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))))
4645eqeq1d 2742 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ↔ ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1))
47463anbi1d 1440 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
4847anbi2d 629 . . . . . . . 8 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
49 oveq1 7455 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (𝐶) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶))
5049breq2d 5178 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)))
5150anbi2d 629 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶))))
52 oveq1 7455 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (𝐵) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵))
5352breq2d 5178 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((2 · 𝐶) ∥ (𝐵) ↔ (2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵)))
5453anbi1d 630 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶) ↔ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))
5551, 54anbi12d 631 . . . . . . . 8 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
5648, 55anbi12d 631 . . . . . . 7 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
5756rexbidv 3185 . . . . . 6 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
58 oveq1 7455 . . . . . . . . . . . 12 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (𝑖↑2) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2))
5958oveq1d 7463 . . . . . . . . . . 11 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))))
6059eqeq1d 2742 . . . . . . . . . 10 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ↔ ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1))
61603anbi1d 1440 . . . . . . . . 9 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
6261anbi2d 629 . . . . . . . 8 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
6362anbi1d 630 . . . . . . 7 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
6463rexbidv 3185 . . . . . 6 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
6542, 57, 64rspc3ev 3652 . . . . 5 ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0) ∧ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))) → ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
6616, 25, 65syl2anc 583 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
67 oveq1 7455 . . . . . . . . . . . 12 (𝑑 = (𝐴 Xrm 𝐵) → (𝑑↑2) = ((𝐴 Xrm 𝐵)↑2))
6867oveq1d 7463 . . . . . . . . . . 11 (𝑑 = (𝐴 Xrm 𝐵) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))))
6968eqeq1d 2742 . . . . . . . . . 10 (𝑑 = (𝐴 Xrm 𝐵) → (((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ↔ (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1))
70693anbi1d 1440 . . . . . . . . 9 (𝑑 = (𝐴 Xrm 𝐵) → ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
7170anbi1d 630 . . . . . . . 8 (𝑑 = (𝐴 Xrm 𝐵) → (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)))))
7271anbi1d 630 . . . . . . 7 (𝑑 = (𝐴 Xrm 𝐵) → ((((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
73722rexbidv 3228 . . . . . 6 (𝑑 = (𝐴 Xrm 𝐵) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
74732rexbidv 3228 . . . . 5 (𝑑 = (𝐴 Xrm 𝐵) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
75 oveq1 7455 . . . . . . . . . . . . 13 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑒↑2) = ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))
7675oveq2d 7464 . . . . . . . . . . . 12 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝐴↑2) − 1) · (𝑒↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2)))
7776oveq2d 7464 . . . . . . . . . . 11 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))))
7877eqeq1d 2742 . . . . . . . . . 10 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ↔ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1))
79783anbi2d 1441 . . . . . . . . 9 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
80 eqeq1 2744 . . . . . . . . . 10 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ↔ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2)))))
81803anbi2d 1441 . . . . . . . . 9 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))))
8279, 81anbi12d 631 . . . . . . . 8 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)))))
8382anbi1d 630 . . . . . . 7 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
84832rexbidv 3228 . . . . . 6 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
85842rexbidv 3228 . . . . 5 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
86 oveq1 7455 . . . . . . . . . . . 12 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓↑2) = ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))
8786oveq1d 7463 . . . . . . . . . . 11 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))))
8887eqeq1d 2742 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ↔ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1))
89883anbi2d 1441 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
90 breq1 5169 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓 ∥ (𝑔𝐴) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)))
91903anbi3d 1442 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))))
9289, 91anbi12d 631 . . . . . . . 8 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)))))
93 breq1 5169 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓 ∥ (𝐶) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)))
9493anbi2d 629 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶))))
9594anbi1d 630 . . . . . . . 8 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
9692, 95anbi12d 631 . . . . . . 7 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
97962rexbidv 3228 . . . . . 6 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
98972rexbidv 3228 . . . . 5 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
9974, 85, 98rspc3ev 3652 . . . 4 ((((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
10015, 66, 99syl2anc 583 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
101100ex 412 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
102 simpll1 1212 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐴 ∈ (ℤ‘2))
103102ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐴 ∈ (ℤ‘2))
104 simpll2 1213 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐵 ∈ ℕ)
105104ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐵 ∈ ℕ)
106 simpll3 1214 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐶 ∈ ℕ)
107106ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐶 ∈ ℕ)
108 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑑 ∈ ℕ0)
109108ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑑 ∈ ℕ0)
110 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑒 ∈ ℕ0)
111110ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑒 ∈ ℕ0)
112 simprl 770 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑓 ∈ ℕ0)
113112ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∈ ℕ0)
114 simprr 772 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑔 ∈ ℕ0)
115114ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑔 ∈ ℕ0)
116 simprl 770 . . . . . . . 8 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → ∈ ℕ0)
117116ad2antrr 725 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ∈ ℕ0)
118 simprr 772 . . . . . . . 8 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑖 ∈ ℕ0)
119118ad2antrr 725 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑖 ∈ ℕ0)
120 simplr 768 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑗 ∈ ℕ0)
121 simp2l1 1272 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
1221213expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
123 simp2l2 1273 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1)
1241233expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1)
125 simp2l3 1274 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑔 ∈ (ℤ‘2))
1261253expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑔 ∈ (ℤ‘2))
127 simp2r1 1275 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1)
1281273expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1)
129 simp2r2 1276 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))))
1301293expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))))
131 simp2r3 1277 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑓 ∥ (𝑔𝐴))
1321313expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∥ (𝑔𝐴))
133 simp3ll 1244 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → (2 · 𝐶) ∥ (𝑔 − 1))
1341333expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → (2 · 𝐶) ∥ (𝑔 − 1))
135 simp3lr 1245 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑓 ∥ (𝐶))
1361353expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∥ (𝐶))
137 simp3rl 1246 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → (2 · 𝐶) ∥ (𝐵))
1381373expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → (2 · 𝐶) ∥ (𝐵))
139 simp3rr 1247 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐵𝐶)
1401393expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐵𝐶)
141103, 105, 107, 109, 111, 113, 115, 117, 119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140jm2.27b 42963 . . . . . 6 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐶 = (𝐴 Yrm 𝐵))
142141rexlimdva2 3163 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → (∃𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
143142rexlimdvva 3219 . . . 4 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → (∃ ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
144143rexlimdvva 3219 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) → (∃𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
145144rexlimdvva 3219 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
146101, 145impbid 212 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  cmin 11520   / cdiv 11947  cn 12293  2c2 12348  0cn0 12553  cuz 12903  cexp 14112  cdvds 16302   Xrm crmx 42856   Yrm crmy 42857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-prm 16719  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801  df-rmx 42858  df-rmy 42859
This theorem is referenced by:  rmydioph  42971
  Copyright terms: Public domain W3C validator