Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27 Structured version   Visualization version   GIF version

Theorem jm2.27 43004
Description: Lemma 2.27 of [JonesMatijasevic] p. 697; rmY is a diophantine relation. 0 was excluded from the range of B and the lower limit of G was imposed because the source proof does not seem to work otherwise; quite possible I'm just missing something. The source proof uses both i and I; i has been changed to j to avoid collision. This theorem is basically nothing but substitution instances, all the work is done in jm2.27a 43001 and jm2.27c 43003. Once Diophantine relations have been defined, the content of the theorem is "rmY is Diophantine". (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
jm2.27 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗   𝐵,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗   𝐶,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗

Proof of Theorem jm2.27
StepHypRef Expression
1 simpl1 1192 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐴 ∈ (ℤ‘2))
2 simpl2 1193 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐵 ∈ ℕ)
3 simpl3 1194 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐶 ∈ ℕ)
4 simpr 484 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐶 = (𝐴 Yrm 𝐵))
5 eqid 2730 . . . . . . 7 (𝐴 Xrm 𝐵) = (𝐴 Xrm 𝐵)
6 eqid 2730 . . . . . . 7 (𝐵 · (𝐴 Yrm 𝐵)) = (𝐵 · (𝐴 Yrm 𝐵))
7 eqid 2730 . . . . . . 7 (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))
8 eqid 2730 . . . . . . 7 (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))
9 eqid 2730 . . . . . . 7 (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))
10 eqid 2730 . . . . . . 7 ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)
11 eqid 2730 . . . . . . 7 ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)
12 eqid 2730 . . . . . . 7 (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12jm2.27c 43003 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0)) ∧ ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))))
1413simpld 494 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → (((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0)))
1514simpld 494 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0))
1614simprd 495 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0))
1713simprd 495 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
18 oveq1 7397 . . . . . . . . . . . 12 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → (𝑗 + 1) = ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1))
1918oveq1d 7405 . . . . . . . . . . 11 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((𝑗 + 1) · (2 · (𝐶↑2))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))))
2019eqeq2d 2741 . . . . . . . . . 10 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ↔ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2)))))
21203anbi2d 1443 . . . . . . . . 9 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
2221anbi2d 630 . . . . . . . 8 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
2322anbi1d 631 . . . . . . 7 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
2423rspcev 3591 . . . . . 6 (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))) → ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
2517, 24syl 17 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
26 eleq1 2817 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔 ∈ (ℤ‘2) ↔ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)))
27263anbi3d 1444 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2))))
28 oveq1 7397 . . . . . . . . . . . . . 14 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔↑2) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2))
2928oveq1d 7405 . . . . . . . . . . . . 13 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝑔↑2) − 1) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1))
3029oveq1d 7405 . . . . . . . . . . . 12 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((𝑔↑2) − 1) · (↑2)) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2)))
3130oveq2d 7406 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))))
3231eqeq1d 2732 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ↔ ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1))
33 oveq1 7397 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔𝐴) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))
3433breq2d 5122 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))
3532, 343anbi13d 1440 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
3627, 35anbi12d 632 . . . . . . . 8 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
37 oveq1 7397 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔 − 1) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1))
3837breq2d 5122 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((2 · 𝐶) ∥ (𝑔 − 1) ↔ (2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1)))
3938anbi1d 631 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶))))
4039anbi1d 631 . . . . . . . 8 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
4136, 40anbi12d 632 . . . . . . 7 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
4241rexbidv 3158 . . . . . 6 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
43 oveq1 7397 . . . . . . . . . . . . 13 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (↑2) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))
4443oveq2d 7406 . . . . . . . . . . . 12 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2)) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2)))
4544oveq2d 7406 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))))
4645eqeq1d 2732 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ↔ ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1))
47463anbi1d 1442 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
4847anbi2d 630 . . . . . . . 8 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
49 oveq1 7397 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (𝐶) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶))
5049breq2d 5122 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)))
5150anbi2d 630 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶))))
52 oveq1 7397 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (𝐵) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵))
5352breq2d 5122 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((2 · 𝐶) ∥ (𝐵) ↔ (2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵)))
5453anbi1d 631 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶) ↔ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))
5551, 54anbi12d 632 . . . . . . . 8 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
5648, 55anbi12d 632 . . . . . . 7 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
5756rexbidv 3158 . . . . . 6 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
58 oveq1 7397 . . . . . . . . . . . 12 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (𝑖↑2) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2))
5958oveq1d 7405 . . . . . . . . . . 11 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))))
6059eqeq1d 2732 . . . . . . . . . 10 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ↔ ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1))
61603anbi1d 1442 . . . . . . . . 9 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
6261anbi2d 630 . . . . . . . 8 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
6362anbi1d 631 . . . . . . 7 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
6463rexbidv 3158 . . . . . 6 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
6542, 57, 64rspc3ev 3608 . . . . 5 ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0) ∧ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))) → ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
6616, 25, 65syl2anc 584 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
67 oveq1 7397 . . . . . . . . . . . 12 (𝑑 = (𝐴 Xrm 𝐵) → (𝑑↑2) = ((𝐴 Xrm 𝐵)↑2))
6867oveq1d 7405 . . . . . . . . . . 11 (𝑑 = (𝐴 Xrm 𝐵) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))))
6968eqeq1d 2732 . . . . . . . . . 10 (𝑑 = (𝐴 Xrm 𝐵) → (((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ↔ (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1))
70693anbi1d 1442 . . . . . . . . 9 (𝑑 = (𝐴 Xrm 𝐵) → ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
7170anbi1d 631 . . . . . . . 8 (𝑑 = (𝐴 Xrm 𝐵) → (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)))))
7271anbi1d 631 . . . . . . 7 (𝑑 = (𝐴 Xrm 𝐵) → ((((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
73722rexbidv 3203 . . . . . 6 (𝑑 = (𝐴 Xrm 𝐵) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
74732rexbidv 3203 . . . . 5 (𝑑 = (𝐴 Xrm 𝐵) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
75 oveq1 7397 . . . . . . . . . . . . 13 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑒↑2) = ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))
7675oveq2d 7406 . . . . . . . . . . . 12 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝐴↑2) − 1) · (𝑒↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2)))
7776oveq2d 7406 . . . . . . . . . . 11 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))))
7877eqeq1d 2732 . . . . . . . . . 10 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ↔ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1))
79783anbi2d 1443 . . . . . . . . 9 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
80 eqeq1 2734 . . . . . . . . . 10 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ↔ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2)))))
81803anbi2d 1443 . . . . . . . . 9 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))))
8279, 81anbi12d 632 . . . . . . . 8 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)))))
8382anbi1d 631 . . . . . . 7 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
84832rexbidv 3203 . . . . . 6 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
85842rexbidv 3203 . . . . 5 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
86 oveq1 7397 . . . . . . . . . . . 12 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓↑2) = ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))
8786oveq1d 7405 . . . . . . . . . . 11 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))))
8887eqeq1d 2732 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ↔ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1))
89883anbi2d 1443 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
90 breq1 5113 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓 ∥ (𝑔𝐴) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)))
91903anbi3d 1444 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))))
9289, 91anbi12d 632 . . . . . . . 8 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)))))
93 breq1 5113 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓 ∥ (𝐶) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)))
9493anbi2d 630 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶))))
9594anbi1d 631 . . . . . . . 8 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
9692, 95anbi12d 632 . . . . . . 7 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
97962rexbidv 3203 . . . . . 6 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
98972rexbidv 3203 . . . . 5 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
9974, 85, 98rspc3ev 3608 . . . 4 ((((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
10015, 66, 99syl2anc 584 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
101100ex 412 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
102 simpll1 1213 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐴 ∈ (ℤ‘2))
103102ad3antrrr 730 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐴 ∈ (ℤ‘2))
104 simpll2 1214 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐵 ∈ ℕ)
105104ad3antrrr 730 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐵 ∈ ℕ)
106 simpll3 1215 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐶 ∈ ℕ)
107106ad3antrrr 730 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐶 ∈ ℕ)
108 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑑 ∈ ℕ0)
109108ad3antrrr 730 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑑 ∈ ℕ0)
110 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑒 ∈ ℕ0)
111110ad3antrrr 730 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑒 ∈ ℕ0)
112 simprl 770 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑓 ∈ ℕ0)
113112ad3antrrr 730 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∈ ℕ0)
114 simprr 772 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑔 ∈ ℕ0)
115114ad3antrrr 730 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑔 ∈ ℕ0)
116 simprl 770 . . . . . . . 8 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → ∈ ℕ0)
117116ad2antrr 726 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ∈ ℕ0)
118 simprr 772 . . . . . . . 8 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑖 ∈ ℕ0)
119118ad2antrr 726 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑖 ∈ ℕ0)
120 simplr 768 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑗 ∈ ℕ0)
121 simp2l1 1273 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
1221213expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
123 simp2l2 1274 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1)
1241233expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1)
125 simp2l3 1275 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑔 ∈ (ℤ‘2))
1261253expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑔 ∈ (ℤ‘2))
127 simp2r1 1276 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1)
1281273expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1)
129 simp2r2 1277 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))))
1301293expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))))
131 simp2r3 1278 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑓 ∥ (𝑔𝐴))
1321313expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∥ (𝑔𝐴))
133 simp3ll 1245 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → (2 · 𝐶) ∥ (𝑔 − 1))
1341333expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → (2 · 𝐶) ∥ (𝑔 − 1))
135 simp3lr 1246 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑓 ∥ (𝐶))
1361353expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∥ (𝐶))
137 simp3rl 1247 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → (2 · 𝐶) ∥ (𝐵))
1381373expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → (2 · 𝐶) ∥ (𝐵))
139 simp3rr 1248 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐵𝐶)
1401393expb 1120 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐵𝐶)
141103, 105, 107, 109, 111, 113, 115, 117, 119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140jm2.27b 43002 . . . . . 6 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐶 = (𝐴 Yrm 𝐵))
142141rexlimdva2 3137 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → (∃𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
143142rexlimdvva 3195 . . . 4 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → (∃ ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
144143rexlimdvva 3195 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) → (∃𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
145144rexlimdvva 3195 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
146101, 145impbid 212 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cuz 12800  cexp 14033  cdvds 16229   Xrm crmx 42895   Yrm crmy 42896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-numer 16712  df-denom 16713  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-squarenn 42836  df-pell1qr 42837  df-pell14qr 42838  df-pell1234qr 42839  df-pellfund 42840  df-rmx 42897  df-rmy 42898
This theorem is referenced by:  rmydioph  43010
  Copyright terms: Public domain W3C validator