Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27 Structured version   Visualization version   GIF version

Theorem jm2.27 39942
Description: Lemma 2.27 of [JonesMatijasevic] p. 697; rmY is a diophantine relation. 0 was excluded from the range of B and the lower limit of G was imposed because the source proof does not seem to work otherwise; quite possible I'm just missing something. The source proof uses both i and I; i has been changed to j to avoid collision. This theorem is basically nothing but substitution instances, all the work is done in jm2.27a 39939 and jm2.27c 39941. Once Diophantine relations have been defined, the content of the theorem is "rmY is Diophantine". (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
jm2.27 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗   𝐵,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗   𝐶,𝑑,𝑒,𝑓,𝑔,,𝑖,𝑗

Proof of Theorem jm2.27
StepHypRef Expression
1 simpl1 1188 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐴 ∈ (ℤ‘2))
2 simpl2 1189 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐵 ∈ ℕ)
3 simpl3 1190 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐶 ∈ ℕ)
4 simpr 488 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → 𝐶 = (𝐴 Yrm 𝐵))
5 eqid 2801 . . . . . . 7 (𝐴 Xrm 𝐵) = (𝐴 Xrm 𝐵)
6 eqid 2801 . . . . . . 7 (𝐵 · (𝐴 Yrm 𝐵)) = (𝐵 · (𝐴 Yrm 𝐵))
7 eqid 2801 . . . . . . 7 (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))
8 eqid 2801 . . . . . . 7 (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))
9 eqid 2801 . . . . . . 7 (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))
10 eqid 2801 . . . . . . 7 ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)
11 eqid 2801 . . . . . . 7 ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)
12 eqid 2801 . . . . . . 7 (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12jm2.27c 39941 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0)) ∧ ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))))
1413simpld 498 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → (((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0)))
1514simpld 498 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0))
1614simprd 499 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0))
1713simprd 499 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
18 oveq1 7146 . . . . . . . . . . . 12 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → (𝑗 + 1) = ((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1))
1918oveq1d 7154 . . . . . . . . . . 11 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((𝑗 + 1) · (2 · (𝐶↑2))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))))
2019eqeq2d 2812 . . . . . . . . . 10 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ↔ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2)))))
21203anbi2d 1438 . . . . . . . . 9 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
2221anbi2d 631 . . . . . . . 8 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
2322anbi1d 632 . . . . . . 7 (𝑗 = (((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
2423rspcev 3574 . . . . . 6 (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) ∈ ℕ0 ∧ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = (((((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) / (2 · (𝐶↑2))) − 1) + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))) → ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
2517, 24syl 17 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
26 eleq1 2880 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔 ∈ (ℤ‘2) ↔ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)))
27263anbi3d 1439 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2))))
28 oveq1 7146 . . . . . . . . . . . . . 14 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔↑2) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2))
2928oveq1d 7154 . . . . . . . . . . . . 13 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝑔↑2) − 1) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1))
3029oveq1d 7154 . . . . . . . . . . . 12 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((𝑔↑2) − 1) · (↑2)) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2)))
3130oveq2d 7155 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))))
3231eqeq1d 2803 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ↔ ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1))
33 oveq1 7146 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔𝐴) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))
3433breq2d 5045 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))
3532, 343anbi13d 1435 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
3627, 35anbi12d 633 . . . . . . . 8 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
37 oveq1 7146 . . . . . . . . . . 11 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (𝑔 − 1) = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1))
3837breq2d 5045 . . . . . . . . . 10 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((2 · 𝐶) ∥ (𝑔 − 1) ↔ (2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1)))
3938anbi1d 632 . . . . . . . . 9 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶))))
4039anbi1d 632 . . . . . . . 8 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → ((((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
4136, 40anbi12d 633 . . . . . . 7 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
4241rexbidv 3259 . . . . . 6 (𝑔 = (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
43 oveq1 7146 . . . . . . . . . . . . 13 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (↑2) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))
4443oveq2d 7155 . . . . . . . . . . . 12 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2)) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2)))
4544oveq2d 7155 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))))
4645eqeq1d 2803 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ↔ ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1))
47463anbi1d 1437 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
4847anbi2d 631 . . . . . . . 8 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
49 oveq1 7146 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (𝐶) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶))
5049breq2d 5045 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)))
5150anbi2d 631 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶))))
52 oveq1 7146 . . . . . . . . . . 11 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (𝐵) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵))
5352breq2d 5045 . . . . . . . . . 10 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((2 · 𝐶) ∥ (𝐵) ↔ (2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵)))
5453anbi1d 632 . . . . . . . . 9 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶) ↔ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))
5551, 54anbi12d 633 . . . . . . . 8 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → ((((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))))
5648, 55anbi12d 633 . . . . . . 7 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
5756rexbidv 3259 . . . . . 6 ( = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
58 oveq1 7146 . . . . . . . . . . . 12 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (𝑖↑2) = (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2))
5958oveq1d 7154 . . . . . . . . . . 11 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))))
6059eqeq1d 2803 . . . . . . . . . 10 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ↔ ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1))
61603anbi1d 1437 . . . . . . . . 9 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)) ↔ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))))
6261anbi2d 631 . . . . . . . 8 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴)))))
6362anbi1d 632 . . . . . . 7 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
6463rexbidv 3259 . . . . . 6 (𝑖 = ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) → (∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((𝑖↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))))
6542, 57, 64rspc3ev 3588 . . . . 5 ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) ∈ ℕ0 ∧ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵) ∈ ℕ0) ∧ ∃𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ (𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) ∈ (ℤ‘2)) ∧ (((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Xrm 𝐵)↑2) − ((((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴)))↑2) − 1) · (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵)↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 𝐴))) ∧ (((2 · 𝐶) ∥ ((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐶)) ∧ ((2 · 𝐶) ∥ (((𝐴 + (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) · (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − 𝐴))) Yrm 𝐵) − 𝐵) ∧ 𝐵𝐶)))) → ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
6616, 25, 65syl2anc 587 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
67 oveq1 7146 . . . . . . . . . . . 12 (𝑑 = (𝐴 Xrm 𝐵) → (𝑑↑2) = ((𝐴 Xrm 𝐵)↑2))
6867oveq1d 7154 . . . . . . . . . . 11 (𝑑 = (𝐴 Xrm 𝐵) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))))
6968eqeq1d 2803 . . . . . . . . . 10 (𝑑 = (𝐴 Xrm 𝐵) → (((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ↔ (((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1))
70693anbi1d 1437 . . . . . . . . 9 (𝑑 = (𝐴 Xrm 𝐵) → ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
7170anbi1d 632 . . . . . . . 8 (𝑑 = (𝐴 Xrm 𝐵) → (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)))))
7271anbi1d 632 . . . . . . 7 (𝑑 = (𝐴 Xrm 𝐵) → ((((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
73722rexbidv 3262 . . . . . 6 (𝑑 = (𝐴 Xrm 𝐵) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
74732rexbidv 3262 . . . . 5 (𝑑 = (𝐴 Xrm 𝐵) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
75 oveq1 7146 . . . . . . . . . . . . 13 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑒↑2) = ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))
7675oveq2d 7155 . . . . . . . . . . . 12 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝐴↑2) − 1) · (𝑒↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2)))
7776oveq2d 7155 . . . . . . . . . . 11 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))))
7877eqeq1d 2803 . . . . . . . . . 10 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ↔ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1))
79783anbi2d 1438 . . . . . . . . 9 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
80 eqeq1 2805 . . . . . . . . . 10 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ↔ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2)))))
81803anbi2d 1438 . . . . . . . . 9 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))))
8279, 81anbi12d 633 . . . . . . . 8 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)))))
8382anbi1d 632 . . . . . . 7 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
84832rexbidv 3262 . . . . . 6 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
85842rexbidv 3262 . . . . 5 (𝑒 = (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
86 oveq1 7146 . . . . . . . . . . . 12 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓↑2) = ((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))
8786oveq1d 7154 . . . . . . . . . . 11 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))))
8887eqeq1d 2803 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ↔ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1))
89883anbi2d 1438 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ↔ ((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2))))
90 breq1 5036 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓 ∥ (𝑔𝐴) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)))
91903anbi3d 1439 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴)) ↔ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))))
9289, 91anbi12d 633 . . . . . . . 8 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ↔ (((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴)))))
93 breq1 5036 . . . . . . . . . 10 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (𝑓 ∥ (𝐶) ↔ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)))
9493anbi2d 631 . . . . . . . . 9 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ↔ ((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶))))
9594anbi1d 632 . . . . . . . 8 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → ((((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)) ↔ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
9692, 95anbi12d 633 . . . . . . 7 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
97962rexbidv 3262 . . . . . 6 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
98972rexbidv 3262 . . . . 5 (𝑓 = (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) → (∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) ↔ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
9974, 85, 98rspc3ev 3588 . . . 4 ((((𝐴 Xrm 𝐵) ∈ ℕ0 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0 ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∈ ℕ0) ∧ ∃𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 ((((((𝐴 Xrm 𝐵)↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ (((𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵))))↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ (𝐴 Yrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ (𝐴 Xrm (2 · (𝐵 · (𝐴 Yrm 𝐵)))) ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
10015, 66, 99syl2anc 587 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ 𝐶 = (𝐴 Yrm 𝐵)) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))))
101100ex 416 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) → ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
102 simpll1 1209 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐴 ∈ (ℤ‘2))
103102ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐴 ∈ (ℤ‘2))
104 simpll2 1210 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐵 ∈ ℕ)
105104ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐵 ∈ ℕ)
106 simpll3 1211 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝐶 ∈ ℕ)
107106ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐶 ∈ ℕ)
108 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑑 ∈ ℕ0)
109108ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑑 ∈ ℕ0)
110 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑒 ∈ ℕ0)
111110ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑒 ∈ ℕ0)
112 simprl 770 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑓 ∈ ℕ0)
113112ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∈ ℕ0)
114 simprr 772 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → 𝑔 ∈ ℕ0)
115114ad3antrrr 729 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑔 ∈ ℕ0)
116 simprl 770 . . . . . . . 8 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → ∈ ℕ0)
117116ad2antrr 725 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ∈ ℕ0)
118 simprr 772 . . . . . . . 8 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → 𝑖 ∈ ℕ0)
119118ad2antrr 725 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑖 ∈ ℕ0)
120 simplr 768 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑗 ∈ ℕ0)
121 simp2l1 1269 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
1221213expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1)
123 simp2l2 1270 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1)
1241233expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1)
125 simp2l3 1271 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑔 ∈ (ℤ‘2))
1261253expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑔 ∈ (ℤ‘2))
127 simp2r1 1272 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1)
1281273expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → ((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1)
129 simp2r2 1273 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))))
1301293expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))))
131 simp2r3 1274 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑓 ∥ (𝑔𝐴))
1321313expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∥ (𝑔𝐴))
133 simp3ll 1241 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → (2 · 𝐶) ∥ (𝑔 − 1))
1341333expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → (2 · 𝐶) ∥ (𝑔 − 1))
135 simp3lr 1242 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝑓 ∥ (𝐶))
1361353expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝑓 ∥ (𝐶))
137 simp3rl 1243 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → (2 · 𝐶) ∥ (𝐵))
1381373expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → (2 · 𝐶) ∥ (𝐵))
139 simp3rr 1244 . . . . . . . 8 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ ((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐵𝐶)
1401393expb 1117 . . . . . . 7 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐵𝐶)
141103, 105, 107, 109, 111, 113, 115, 117, 119, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140jm2.27b 39940 . . . . . 6 (((((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) ∧ 𝑗 ∈ ℕ0) ∧ (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))) → 𝐶 = (𝐴 Yrm 𝐵))
142141rexlimdva2 3249 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) ∧ ( ∈ ℕ0𝑖 ∈ ℕ0)) → (∃𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
143142rexlimdvva 3256 . . . 4 ((((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) ∧ (𝑓 ∈ ℕ0𝑔 ∈ ℕ0)) → (∃ ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
144143rexlimdvva 3256 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (𝑑 ∈ ℕ0𝑒 ∈ ℕ0)) → (∃𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
145144rexlimdvva 3256 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶))) → 𝐶 = (𝐴 Yrm 𝐵)))
146101, 145impbid 215 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 = (𝐴 Yrm 𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0𝑔 ∈ ℕ0 ∈ ℕ0𝑖 ∈ ℕ0𝑗 ∈ ℕ0 (((((𝑑↑2) − (((𝐴↑2) − 1) · (𝐶↑2))) = 1 ∧ ((𝑓↑2) − (((𝐴↑2) − 1) · (𝑒↑2))) = 1 ∧ 𝑔 ∈ (ℤ‘2)) ∧ (((𝑖↑2) − (((𝑔↑2) − 1) · (↑2))) = 1 ∧ 𝑒 = ((𝑗 + 1) · (2 · (𝐶↑2))) ∧ 𝑓 ∥ (𝑔𝐴))) ∧ (((2 · 𝐶) ∥ (𝑔 − 1) ∧ 𝑓 ∥ (𝐶)) ∧ ((2 · 𝐶) ∥ (𝐵) ∧ 𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wrex 3110   class class class wbr 5033  cfv 6328  (class class class)co 7139  1c1 10531   + caddc 10533   · cmul 10535  cle 10669  cmin 10863   / cdiv 11290  cn 11629  2c2 11684  0cn0 11889  cuz 12235  cexp 13429  cdvds 15603   Xrm crmx 39834   Yrm crmy 39835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-shft 14422  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-limsup 14824  df-clim 14841  df-rlim 14842  df-sum 15039  df-ef 15417  df-sin 15419  df-cos 15420  df-pi 15422  df-dvds 15604  df-gcd 15838  df-prm 16010  df-numer 16069  df-denom 16070  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-top 21503  df-topon 21520  df-topsp 21542  df-bases 21555  df-cld 21628  df-ntr 21629  df-cls 21630  df-nei 21707  df-lp 21745  df-perf 21746  df-cn 21836  df-cnp 21837  df-haus 21924  df-tx 22171  df-hmeo 22364  df-fil 22455  df-fm 22547  df-flim 22548  df-flf 22549  df-xms 22931  df-ms 22932  df-tms 22933  df-cncf 23487  df-limc 24473  df-dv 24474  df-log 25152  df-squarenn 39775  df-pell1qr 39776  df-pell14qr 39777  df-pell1234qr 39778  df-pellfund 39779  df-rmx 39836  df-rmy 39837
This theorem is referenced by:  rmydioph  39948
  Copyright terms: Public domain W3C validator