Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnconn1lem8 Structured version   Visualization version   GIF version

Theorem btwnconn1lem8 36095
Description: Lemma for btwnconn1 36102. Now, we introduce the last three points used in the construction: 𝑃, 𝑄, and 𝑅 will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of 𝑅𝑃 and 𝐸𝑑. (Contributed by Scott Fenton, 8-Oct-2013.)
Assertion
Ref Expression
btwnconn1lem8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩)

Proof of Theorem btwnconn1lem8
StepHypRef Expression
1 simpr2l 1233 . . . 4 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → 𝐶 Btwn ⟨𝑑, 𝑅⟩)
21ad2antll 729 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝑑, 𝑅⟩)
3 simpr1r 1232 . . . . . 6 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)
43ad2antll 729 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)
5 simp11 1204 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp2l1 1273 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
7 simp31 1210 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
8 simp2r1 1276 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑑 ∈ (𝔼‘𝑁))
9 cgrcomlr 35999 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩))
105, 6, 7, 6, 8, 9syl122anc 1381 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩))
11 cgrcom 35991 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
125, 7, 6, 8, 6, 11syl122anc 1381 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑃, 𝐶⟩Cgr⟨𝑑, 𝐶⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
1310, 12bitrd 279 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
1413adantr 480 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩ ↔ ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩))
154, 14mpbid 232 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩)
16 simp33 1212 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑅 ∈ (𝔼‘𝑁))
17 simp2r3 1278 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝐸 ∈ (𝔼‘𝑁))
18 simp2l3 1275 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → 𝑐 ∈ (𝔼‘𝑁))
19 simpr1l 1231 . . . . . . . 8 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → 𝐶 Btwn ⟨𝑐, 𝑃⟩)
2019ad2antll 729 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝑐, 𝑃⟩)
215, 6, 18, 7, 20btwncomand 36016 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝑃, 𝑐⟩)
22 simprll 779 . . . . . . 7 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → 𝐸 Btwn ⟨𝐶, 𝑐⟩)
2322adantl 481 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐸 Btwn ⟨𝐶, 𝑐⟩)
24 btwnintr 36020 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝑃, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐶, 𝑐⟩) → 𝐶 Btwn ⟨𝑃, 𝐸⟩))
255, 7, 6, 17, 18, 24syl122anc 1381 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn ⟨𝑃, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐶, 𝑐⟩) → 𝐶 Btwn ⟨𝑃, 𝐸⟩))
2625adantr 480 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ((𝐶 Btwn ⟨𝑃, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐶, 𝑐⟩) → 𝐶 Btwn ⟨𝑃, 𝐸⟩))
2721, 23, 26mp2and 699 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶 Btwn ⟨𝑃, 𝐸⟩)
28 simpr2r 1234 . . . . . 6 (((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))) → ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)
2928ad2antll 729 . . . . 5 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)
305, 8, 6, 16, 7, 6, 17, 2, 27, 15, 29cgrextendand 36010 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝑅⟩Cgr⟨𝑃, 𝐸⟩)
31 brcgr3 36047 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → (⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ↔ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝑑, 𝑅⟩Cgr⟨𝑃, 𝐸⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)))
325, 8, 6, 16, 7, 6, 17, 31syl133anc 1395 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ↔ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝑑, 𝑅⟩Cgr⟨𝑃, 𝐸⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)))
3332adantr 480 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ↔ (⟨𝑑, 𝐶⟩Cgr⟨𝑃, 𝐶⟩ ∧ ⟨𝑑, 𝑅⟩Cgr⟨𝑃, 𝐸⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩)))
3415, 30, 29, 33mpbir3and 1343 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩)
355, 8, 7cgrrflx2d 35985 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩)
3635adantr 480 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩)
3736, 4jca 511 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩))
382, 34, 373jca 1129 . 2 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ∧ (⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)))
39 simp1 1137 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
40 simp2l 1200 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)))
41 simp2r 1201 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)))
4239, 40, 413jca 1129 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))))
43 simpl 482 . . . . 5 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → (((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))))
44 simprl 771 . . . . 5 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → (𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩))
4543, 44jca 511 . . . 4 (((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩)))) → ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ (𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩)))
46 btwnconn1lem7 36094 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ (𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩))) → 𝐶𝑑)
4742, 45, 46syl2an 596 . . 3 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝐶𝑑)
4847necomd 2996 . 2 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → 𝑑𝐶)
49 brofs2 36078 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (⟨⟨𝑑, 𝐶⟩, ⟨𝑅, 𝑃⟩⟩ OuterFiveSeg ⟨⟨𝑃, 𝐶⟩, ⟨𝐸, 𝑑⟩⟩ ↔ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ∧ (⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩))))
5049anbi1d 631 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑑, 𝐶⟩, ⟨𝑅, 𝑃⟩⟩ OuterFiveSeg ⟨⟨𝑃, 𝐶⟩, ⟨𝐸, 𝑑⟩⟩ ∧ 𝑑𝐶) ↔ ((𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ∧ (⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)) ∧ 𝑑𝐶)))
51 5segofs 36007 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → ((⟨⟨𝑑, 𝐶⟩, ⟨𝑅, 𝑃⟩⟩ OuterFiveSeg ⟨⟨𝑃, 𝐶⟩, ⟨𝐸, 𝑑⟩⟩ ∧ 𝑑𝐶) → ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩))
5250, 51sylbird 260 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑑 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑅 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → (((𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ∧ (⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)) ∧ 𝑑𝐶) → ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩))
535, 8, 6, 16, 7, 7, 6, 17, 8, 52syl333anc 1404 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) → (((𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ∧ (⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)) ∧ 𝑑𝐶) → ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩))
5453adantr 480 . 2 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → (((𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝑑, ⟨𝐶, 𝑅⟩⟩Cgr3⟨𝑃, ⟨𝐶, 𝐸⟩⟩ ∧ (⟨𝑑, 𝑃⟩Cgr⟨𝑃, 𝑑⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩)) ∧ 𝑑𝐶) → ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩))
5538, 48, 54mp2and 699 1 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴𝐵𝐵𝐶𝐶𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) ∧ ((𝐸 Btwn ⟨𝐶, 𝑐⟩ ∧ 𝐸 Btwn ⟨𝐷, 𝑑⟩) ∧ ((𝐶 Btwn ⟨𝑐, 𝑃⟩ ∧ ⟨𝐶, 𝑃⟩Cgr⟨𝐶, 𝑑⟩) ∧ (𝐶 Btwn ⟨𝑑, 𝑅⟩ ∧ ⟨𝐶, 𝑅⟩Cgr⟨𝐶, 𝐸⟩) ∧ (𝑅 Btwn ⟨𝑃, 𝑄⟩ ∧ ⟨𝑅, 𝑄⟩Cgr⟨𝑅, 𝑃⟩))))) → ⟨𝑅, 𝑃⟩Cgr⟨𝐸, 𝑑⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  wne 2940  cop 4632   class class class wbr 5143  cfv 6561  cn 12266  𝔼cee 28903   Btwn cbtwn 28904  Cgrccgr 28905   OuterFiveSeg cofs 35983  Cgr3ccgr3 36037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-ee 28906  df-btwn 28907  df-cgr 28908  df-ofs 35984  df-ifs 36041  df-cgr3 36042
This theorem is referenced by:  btwnconn1lem9  36096  btwnconn1lem10  36097  btwnconn1lem11  36098
  Copyright terms: Public domain W3C validator