Step | Hyp | Ref
| Expression |
1 | | iunrelexpmin2.def |
. . . . 5
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
2 | 1 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛))) |
3 | | simplr 759 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ0) |
4 | | simpr 479 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
5 | 4 | oveq1d 6939 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) |
6 | 3, 5 | iuneq12d 4781 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → ∪
𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑅↑𝑟𝑛)) |
7 | | elex 3414 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
8 | 7 | adantr 474 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → 𝑅 ∈ V) |
9 | | nn0ex 11654 |
. . . . . 6
⊢
ℕ0 ∈ V |
10 | | ovex 6956 |
. . . . . 6
⊢ (𝑅↑𝑟𝑛) ∈ V |
11 | 9, 10 | iunex 7427 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
12 | 11 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
13 | 2, 6, 8, 12 | fvmptd 6550 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → (𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛)) |
14 | | relexp0g 14175 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
15 | 14 | sseq1d 3851 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟0) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) |
16 | | relexp1g 14179 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
17 | 16 | sseq1d 3851 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1) ⊆ 𝑠 ↔ 𝑅 ⊆ 𝑠)) |
18 | 15, 17 | 3anbi12d 1510 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠))) |
19 | | elnn0 11649 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↔ (𝑛 ∈ ℕ
∨ 𝑛 =
0)) |
20 | | oveq2 6932 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 1 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟1)) |
21 | 20 | sseq1d 3851 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟1) ⊆ 𝑠)) |
22 | 21 | imbi2d 332 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟1) ⊆ 𝑠))) |
23 | | oveq2 6932 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑦)) |
24 | 23 | sseq1d 3851 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑦) ⊆ 𝑠)) |
25 | 24 | imbi2d 332 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑦) ⊆ 𝑠))) |
26 | | oveq2 6932 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 + 1) → (𝑅↑𝑟𝑥) = (𝑅↑𝑟(𝑦 + 1))) |
27 | 26 | sseq1d 3851 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + 1) → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠)) |
28 | 27 | imbi2d 332 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + 1) → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
29 | | oveq2 6932 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑛)) |
30 | 29 | sseq1d 3851 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
31 | 30 | imbi2d 332 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
32 | | simpr2 1207 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟1) ⊆ 𝑠) |
33 | | simp1 1127 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ) |
34 | | 1nn 11392 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ |
35 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ) |
36 | | simp2l 1213 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 𝑅 ∈ 𝑉) |
37 | | relexpaddnn 14204 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ 1 ∈
ℕ ∧ 𝑅 ∈
𝑉) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) = (𝑅↑𝑟(𝑦 + 1))) |
38 | 33, 35, 36, 37 | syl3anc 1439 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) = (𝑅↑𝑟(𝑦 + 1))) |
39 | | simp2r3 1333 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑠 ∘ 𝑠) ⊆ 𝑠) |
40 | | simp3 1129 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟𝑦) ⊆ 𝑠) |
41 | | simp2r2 1332 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟1) ⊆ 𝑠) |
42 | 39, 40, 41 | trrelssd 14127 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) ⊆ 𝑠) |
43 | 38, 42 | eqsstr3d 3859 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠) |
44 | 43 | 3exp 1109 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ((𝑅↑𝑟𝑦) ⊆ 𝑠 → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
45 | 44 | a2d 29 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
46 | 22, 25, 28, 31, 32, 45 | nnind 11399 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
47 | | simpr1 1205 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟0) ⊆ 𝑠) |
48 | | oveq2 6932 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) |
49 | 48 | sseq1d 3851 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 0 → ((𝑅↑𝑟𝑛) ⊆ 𝑠 ↔ (𝑅↑𝑟0) ⊆ 𝑠)) |
50 | 47, 49 | syl5ibr 238 |
. . . . . . . . . . . 12
⊢ (𝑛 = 0 → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
51 | 46, 50 | jaoi 846 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∨ 𝑛 = 0) → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
52 | 19, 51 | sylbi 209 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
53 | 52 | com12 32 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ0 → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
54 | 53 | ralrimiv 3147 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
55 | | iunss 4796 |
. . . . . . . 8
⊢ (∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
56 | 54, 55 | sylibr 226 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
57 | 56 | ex 403 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
58 | 18, 57 | sylbird 252 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
59 | 58 | adantr 474 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ((( I ↾
(dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
60 | | sseq1 3845 |
. . . . 5
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → ((𝐶‘𝑅) ⊆ 𝑠 ↔ ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
61 | 60 | imbi2d 332 |
. . . 4
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
62 | 59, 61 | syl5ibr 238 |
. . 3
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ((( I ↾
(dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠))) |
63 | 13, 62 | mpcom 38 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ((( I ↾
(dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) |
64 | 63 | alrimiv 1970 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) |