Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin2 Structured version   Visualization version   GIF version

Theorem iunrelexpmin2 43674
Description: The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin2 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin2.def . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
2 simplr 768 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ0)
3 simpr 484 . . . . . 6 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
43oveq1d 7463 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
52, 4iuneq12d 5044 . . . 4 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
6 elex 3509 . . . . 5 (𝑅𝑉𝑅 ∈ V)
76adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑅 ∈ V)
8 nn0ex 12559 . . . . . 6 0 ∈ V
9 ovex 7481 . . . . . 6 (𝑅𝑟𝑛) ∈ V
108, 9iunex 8009 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
1110a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
121, 5, 7, 11fvmptd2 7037 . . 3 ((𝑅𝑉𝑁 = ℕ0) → (𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
13 relexp0g 15071 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1413sseq1d 4040 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟0) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
15 relexp1g 15075 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1615sseq1d 4040 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1714, 163anbi12d 1437 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
18 elnn0 12555 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
19 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
2019sseq1d 4040 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
2120imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
22 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2322sseq1d 4040 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2423imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
25 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2625sseq1d 4040 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2726imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
28 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
2928sseq1d 4040 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
3029imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
31 simpr2 1195 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
32 simp1 1136 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
33 1nn 12304 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
3433a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
35 simp2l 1199 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
36 relexpaddnn 15100 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3732, 34, 35, 36syl3anc 1371 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
38 simp2r3 1277 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
39 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
40 simp2r2 1276 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
4138, 39, 40trrelssd 15022 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
4237, 41eqsstrrd 4048 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
43423exp 1119 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4443a2d 29 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4521, 24, 27, 30, 31, 44nnind 12311 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
46 simpr1 1194 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟0) ⊆ 𝑠)
47 oveq2 7456 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
4847sseq1d 4040 . . . . . . . . . . . . 13 (𝑛 = 0 → ((𝑅𝑟𝑛) ⊆ 𝑠 ↔ (𝑅𝑟0) ⊆ 𝑠))
4946, 48imbitrrid 246 . . . . . . . . . . . 12 (𝑛 = 0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5045, 49jaoi 856 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∨ 𝑛 = 0) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5118, 50sylbi 217 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5251com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ0 → (𝑅𝑟𝑛) ⊆ 𝑠))
5352ralrimiv 3151 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
54 iunss 5068 . . . . . . . 8 ( 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5553, 54sylibr 234 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5655ex 412 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5717, 56sylbird 260 . . . . 5 (𝑅𝑉 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5857adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
59 sseq1 4034 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
6059imbi2d 340 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)))
6158, 60imbitrrid 246 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
6212, 61mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
6362alrimiv 1926 1 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cun 3974  wss 3976   ciun 5015  cmpt 5249   I cid 5592  dom cdm 5700  ran crn 5701  cres 5702  ccom 5704  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  cn 12293  0cn0 12553  𝑟crelexp 15068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-relexp 15069
This theorem is referenced by:  dfrtrcl3  43695
  Copyright terms: Public domain W3C validator