Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin2 Structured version   Visualization version   GIF version

Theorem iunrelexpmin2 41209
Description: The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin2 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin2.def . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
2 simplr 765 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ0)
3 simpr 484 . . . . . 6 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
43oveq1d 7270 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
52, 4iuneq12d 4949 . . . 4 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
6 elex 3440 . . . . 5 (𝑅𝑉𝑅 ∈ V)
76adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑅 ∈ V)
8 nn0ex 12169 . . . . . 6 0 ∈ V
9 ovex 7288 . . . . . 6 (𝑅𝑟𝑛) ∈ V
108, 9iunex 7784 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
1110a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
121, 5, 7, 11fvmptd2 6865 . . 3 ((𝑅𝑉𝑁 = ℕ0) → (𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
13 relexp0g 14661 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1413sseq1d 3948 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟0) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
15 relexp1g 14665 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1615sseq1d 3948 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1714, 163anbi12d 1435 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
18 elnn0 12165 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
19 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
2019sseq1d 3948 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
2120imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
22 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2322sseq1d 3948 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2423imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
25 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2625sseq1d 3948 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2726imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
28 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
2928sseq1d 3948 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
3029imbi2d 340 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
31 simpr2 1193 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
32 simp1 1134 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
33 1nn 11914 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
3433a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
35 simp2l 1197 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
36 relexpaddnn 14690 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3732, 34, 35, 36syl3anc 1369 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
38 simp2r3 1275 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
39 simp3 1136 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
40 simp2r2 1274 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
4138, 39, 40trrelssd 14612 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
4237, 41eqsstrrd 3956 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
43423exp 1117 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4443a2d 29 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4521, 24, 27, 30, 31, 44nnind 11921 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
46 simpr1 1192 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟0) ⊆ 𝑠)
47 oveq2 7263 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
4847sseq1d 3948 . . . . . . . . . . . . 13 (𝑛 = 0 → ((𝑅𝑟𝑛) ⊆ 𝑠 ↔ (𝑅𝑟0) ⊆ 𝑠))
4946, 48syl5ibr 245 . . . . . . . . . . . 12 (𝑛 = 0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5045, 49jaoi 853 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∨ 𝑛 = 0) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5118, 50sylbi 216 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5251com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ0 → (𝑅𝑟𝑛) ⊆ 𝑠))
5352ralrimiv 3106 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
54 iunss 4971 . . . . . . . 8 ( 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5553, 54sylibr 233 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5655ex 412 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5717, 56sylbird 259 . . . . 5 (𝑅𝑉 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5857adantr 480 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
59 sseq1 3942 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
6059imbi2d 340 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)))
6158, 60syl5ibr 245 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
6212, 61mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
6362alrimiv 1931 1 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cun 3881  wss 3883   ciun 4921  cmpt 5153   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  0cn0 12163  𝑟crelexp 14658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-relexp 14659
This theorem is referenced by:  dfrtrcl3  41230
  Copyright terms: Public domain W3C validator