Step | Hyp | Ref
| Expression |
1 | | iunrelexpmin2.def |
. . . 4
⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) |
2 | | simplr 765 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ0) |
3 | | simpr 484 |
. . . . . 6
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅) |
4 | 3 | oveq1d 7270 |
. . . . 5
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → (𝑟↑𝑟𝑛) = (𝑅↑𝑟𝑛)) |
5 | 2, 4 | iuneq12d 4949 |
. . . 4
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → ∪
𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ0
(𝑅↑𝑟𝑛)) |
6 | | elex 3440 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
7 | 6 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → 𝑅 ∈ V) |
8 | | nn0ex 12169 |
. . . . . 6
⊢
ℕ0 ∈ V |
9 | | ovex 7288 |
. . . . . 6
⊢ (𝑅↑𝑟𝑛) ∈ V |
10 | 8, 9 | iunex 7784 |
. . . . 5
⊢ ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V |
11 | 10 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ∈ V) |
12 | 1, 5, 7, 11 | fvmptd2 6865 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → (𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛)) |
13 | | relexp0g 14661 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟0) = ( I ↾
(dom 𝑅 ∪ ran 𝑅))) |
14 | 13 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟0) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠)) |
15 | | relexp1g 14665 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟1) = 𝑅) |
16 | 15 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → ((𝑅↑𝑟1) ⊆ 𝑠 ↔ 𝑅 ⊆ 𝑠)) |
17 | 14, 16 | 3anbi12d 1435 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠))) |
18 | | elnn0 12165 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↔ (𝑛 ∈ ℕ
∨ 𝑛 =
0)) |
19 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 1 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟1)) |
20 | 19 | sseq1d 3948 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟1) ⊆ 𝑠)) |
21 | 20 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟1) ⊆ 𝑠))) |
22 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑦)) |
23 | 22 | sseq1d 3948 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑦) ⊆ 𝑠)) |
24 | 23 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑦) ⊆ 𝑠))) |
25 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑦 + 1) → (𝑅↑𝑟𝑥) = (𝑅↑𝑟(𝑦 + 1))) |
26 | 25 | sseq1d 3948 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑦 + 1) → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠)) |
27 | 26 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑦 + 1) → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
28 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑛 → (𝑅↑𝑟𝑥) = (𝑅↑𝑟𝑛)) |
29 | 28 | sseq1d 3948 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑛 → ((𝑅↑𝑟𝑥) ⊆ 𝑠 ↔ (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
30 | 29 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑛 → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
31 | | simpr2 1193 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟1) ⊆ 𝑠) |
32 | | simp1 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ) |
33 | | 1nn 11914 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℕ |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ) |
35 | | simp2l 1197 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → 𝑅 ∈ 𝑉) |
36 | | relexpaddnn 14690 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ 1 ∈
ℕ ∧ 𝑅 ∈
𝑉) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) = (𝑅↑𝑟(𝑦 + 1))) |
37 | 32, 34, 35, 36 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) = (𝑅↑𝑟(𝑦 + 1))) |
38 | | simp2r3 1275 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑠 ∘ 𝑠) ⊆ 𝑠) |
39 | | simp3 1136 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟𝑦) ⊆ 𝑠) |
40 | | simp2r2 1274 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟1) ⊆ 𝑠) |
41 | 38, 39, 40 | trrelssd 14612 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅↑𝑟𝑦) ∘ (𝑅↑𝑟1)) ⊆ 𝑠) |
42 | 37, 41 | eqsstrrd 3956 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℕ ∧ (𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) ∧ (𝑅↑𝑟𝑦) ⊆ 𝑠) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠) |
43 | 42 | 3exp 1117 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ((𝑅↑𝑟𝑦) ⊆ 𝑠 → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
44 | 43 | a2d 29 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → (((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑦) ⊆ 𝑠) → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟(𝑦 + 1)) ⊆ 𝑠))) |
45 | 21, 24, 27, 30, 31, 44 | nnind 11921 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
46 | | simpr1 1192 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟0) ⊆ 𝑠) |
47 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 0 → (𝑅↑𝑟𝑛) = (𝑅↑𝑟0)) |
48 | 47 | sseq1d 3948 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 0 → ((𝑅↑𝑟𝑛) ⊆ 𝑠 ↔ (𝑅↑𝑟0) ⊆ 𝑠)) |
49 | 46, 48 | syl5ibr 245 |
. . . . . . . . . . . 12
⊢ (𝑛 = 0 → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
50 | 45, 49 | jaoi 853 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∨ 𝑛 = 0) → ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
51 | 18, 50 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
52 | 51 | com12 32 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ0 → (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
53 | 52 | ralrimiv 3106 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
54 | | iunss 4971 |
. . . . . . . 8
⊢ (∪ 𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
55 | 53, 54 | sylibr 233 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ ((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠)) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠) |
56 | 55 | ex 412 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (((𝑅↑𝑟0) ⊆ 𝑠 ∧ (𝑅↑𝑟1) ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
57 | 17, 56 | sylbird 259 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
58 | 57 | adantr 480 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ((( I ↾
(dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
59 | | sseq1 3942 |
. . . . 5
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → ((𝐶‘𝑅) ⊆ 𝑠 ↔ ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠)) |
60 | 59 | imbi2d 340 |
. . . 4
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) ⊆ 𝑠))) |
61 | 58, 60 | syl5ibr 245 |
. . 3
⊢ ((𝐶‘𝑅) = ∪
𝑛 ∈
ℕ0 (𝑅↑𝑟𝑛) → ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ((( I ↾
(dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠))) |
62 | 12, 61 | mpcom 38 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ((( I ↾
(dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) |
63 | 62 | alrimiv 1931 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠 ∧ 𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) |