Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin2 Structured version   Visualization version   GIF version

Theorem iunrelexpmin2 41320
Description: The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin2 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin2.def . . . 4 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
2 simplr 766 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ0)
3 simpr 485 . . . . . 6 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
43oveq1d 7290 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
52, 4iuneq12d 4952 . . . 4 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
6 elex 3450 . . . . 5 (𝑅𝑉𝑅 ∈ V)
76adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑅 ∈ V)
8 nn0ex 12239 . . . . . 6 0 ∈ V
9 ovex 7308 . . . . . 6 (𝑅𝑟𝑛) ∈ V
108, 9iunex 7811 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
1110a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
121, 5, 7, 11fvmptd2 6883 . . 3 ((𝑅𝑉𝑁 = ℕ0) → (𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
13 relexp0g 14733 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1413sseq1d 3952 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟0) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
15 relexp1g 14737 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1615sseq1d 3952 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1714, 163anbi12d 1436 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
18 elnn0 12235 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
19 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
2019sseq1d 3952 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
2120imbi2d 341 . . . . . . . . . . . . 13 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
22 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2322sseq1d 3952 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2423imbi2d 341 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
25 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2625sseq1d 3952 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2726imbi2d 341 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
28 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
2928sseq1d 3952 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
3029imbi2d 341 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
31 simpr2 1194 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
32 simp1 1135 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
33 1nn 11984 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
3433a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
35 simp2l 1198 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
36 relexpaddnn 14762 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3732, 34, 35, 36syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
38 simp2r3 1276 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
39 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
40 simp2r2 1275 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
4138, 39, 40trrelssd 14684 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
4237, 41eqsstrrd 3960 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
43423exp 1118 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4443a2d 29 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4521, 24, 27, 30, 31, 44nnind 11991 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
46 simpr1 1193 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟0) ⊆ 𝑠)
47 oveq2 7283 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
4847sseq1d 3952 . . . . . . . . . . . . 13 (𝑛 = 0 → ((𝑅𝑟𝑛) ⊆ 𝑠 ↔ (𝑅𝑟0) ⊆ 𝑠))
4946, 48syl5ibr 245 . . . . . . . . . . . 12 (𝑛 = 0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5045, 49jaoi 854 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∨ 𝑛 = 0) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5118, 50sylbi 216 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5251com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ0 → (𝑅𝑟𝑛) ⊆ 𝑠))
5352ralrimiv 3102 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
54 iunss 4975 . . . . . . . 8 ( 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5553, 54sylibr 233 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5655ex 413 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5717, 56sylbird 259 . . . . 5 (𝑅𝑉 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5857adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
59 sseq1 3946 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
6059imbi2d 341 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)))
6158, 60syl5ibr 245 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
6212, 61mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
6362alrimiv 1930 1 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  wss 3887   ciun 4924  cmpt 5157   I cid 5488  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  cn 11973  0cn0 12233  𝑟crelexp 14730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-relexp 14731
This theorem is referenced by:  dfrtrcl3  41341
  Copyright terms: Public domain W3C validator