Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Structured version   Visualization version   GIF version

Theorem cdlemj3 40995
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑔. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b 𝐵 = (Base‘𝐾)
cdlemj.h 𝐻 = (LHyp‘𝐾)
cdlemj.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemj.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemj.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemj3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))

Proof of Theorem cdlemj3
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2733 . . . 4 (le‘𝐾) = (le‘𝐾)
3 eqid 2733 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
4 cdlemj.h . . . 4 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 40182 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))
61, 5syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))
7 simpl1l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL)
87adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝐾 ∈ HL)
9 simpl1r 1226 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → 𝑊𝐻)
109adantr 480 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑊𝐻)
11 simprl 770 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑢 ∈ (Atoms‘𝐾))
12 simprr1 1222 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑢(le‘𝐾)𝑊)
13 cdlemj.b . . . . 5 𝐵 = (Base‘𝐾)
14 cdlemj.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemj.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1613, 2, 3, 4, 14, 15cdlemfnid 40736 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))
178, 10, 11, 12, 16syl22anc 838 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → ∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))
18 simp1l 1198 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)))
19 simp1r 1199 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → ≠ ( I ↾ 𝐵))
20 simp3l 1202 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔𝑇)
21 simp3rr 1248 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔 ≠ ( I ↾ 𝐵))
22 simp2r2 1277 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅𝐹))
2322necomd 2984 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) ≠ 𝑢)
24 simp3rl 1247 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝑔) = 𝑢)
2523, 24neeqtrrd 3003 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) ≠ (𝑅𝑔))
26 simp2r3 1278 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅))
2724, 26eqnetrd 2996 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝑔) ≠ (𝑅))
28 cdlemj.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
2913, 4, 14, 15, 28cdlemj2 40994 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅))) → (𝑈) = (𝑉))
3018, 19, 20, 21, 25, 27, 29syl132anc 1390 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑈) = (𝑉))
31303expia 1121 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → ((𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵))) → (𝑈) = (𝑉)))
3231expd 415 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (𝑔𝑇 → (((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))))
3332rexlimdv 3132 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉)))
3417, 33mpd 15 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (𝑈) = (𝑉))
356, 34rexlimddv 3140 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5095   I cid 5515  cres 5623  cfv 6489  Basecbs 17127  lecple 17175  Atomscatm 39435  HLchlt 39522  LHypclh 40156  LTrncltrn 40273  trLctrl 40330  TEndoctendo 40924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-riotaBAD 39125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-undef 8212  df-map 8761  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-llines 39670  df-lplanes 39671  df-lvols 39672  df-lines 39673  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160  df-laut 40161  df-ldil 40276  df-ltrn 40277  df-trl 40331  df-tendo 40927
This theorem is referenced by:  tendocan  40996
  Copyright terms: Public domain W3C validator