Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Structured version   Visualization version   GIF version

Theorem cdlemj3 40328
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑔. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b 𝐡 = (Baseβ€˜πΎ)
cdlemj.h 𝐻 = (LHypβ€˜πΎ)
cdlemj.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemj.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemj.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemj3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))

Proof of Theorem cdlemj3
Dummy variables 𝑔 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 eqid 2728 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
3 eqid 2728 . . . 4 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
4 cdlemj.h . . . 4 𝐻 = (LHypβ€˜πΎ)
52, 3, 4lhpexle2 39515 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ βˆƒπ‘’ ∈ (Atomsβ€˜πΎ)(𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))
61, 5syl 17 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) β†’ βˆƒπ‘’ ∈ (Atomsβ€˜πΎ)(𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))
7 simpl1l 1221 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) β†’ 𝐾 ∈ HL)
87adantr 479 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ 𝐾 ∈ HL)
9 simpl1r 1222 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) β†’ π‘Š ∈ 𝐻)
109adantr 479 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ π‘Š ∈ 𝐻)
11 simprl 769 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ 𝑒 ∈ (Atomsβ€˜πΎ))
12 simprr1 1218 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ 𝑒(leβ€˜πΎ)π‘Š)
13 cdlemj.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
14 cdlemj.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
15 cdlemj.r . . . . 5 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
1613, 2, 3, 4, 14, 15cdlemfnid 40069 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ 𝑒(leβ€˜πΎ)π‘Š)) β†’ βˆƒπ‘” ∈ 𝑇 ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))
178, 10, 11, 12, 16syl22anc 837 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ βˆƒπ‘” ∈ 𝑇 ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))
18 simp1l 1194 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)))
19 simp1r 1195 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ β„Ž β‰  ( I β†Ύ 𝐡))
20 simp3l 1198 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑔 ∈ 𝑇)
21 simp3rr 1244 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑔 β‰  ( I β†Ύ 𝐡))
22 simp2r2 1273 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑒 β‰  (π‘…β€˜πΉ))
2322necomd 2993 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜πΉ) β‰  𝑒)
24 simp3rl 1243 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜π‘”) = 𝑒)
2523, 24neeqtrrd 3012 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”))
26 simp2r3 1274 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ 𝑒 β‰  (π‘…β€˜β„Ž))
2724, 26eqnetrd 3005 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))
28 cdlemj.e . . . . . . . 8 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
2913, 4, 14, 15, 28cdlemj2 40327 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ (β„Ž β‰  ( I β†Ύ 𝐡) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΉ) β‰  (π‘…β€˜π‘”) ∧ (π‘…β€˜π‘”) β‰  (π‘…β€˜β„Ž))) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))
3018, 19, 20, 21, 25, 27, 29syl132anc 1385 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž))) ∧ (𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)))) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))
31303expia 1118 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ ((𝑔 ∈ 𝑇 ∧ ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡))) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž)))
3231expd 414 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ (𝑔 ∈ 𝑇 β†’ (((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))))
3332rexlimdv 3150 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ (βˆƒπ‘” ∈ 𝑇 ((π‘…β€˜π‘”) = 𝑒 ∧ 𝑔 β‰  ( I β†Ύ 𝐡)) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž)))
3417, 33mpd 15 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) ∧ (𝑒 ∈ (Atomsβ€˜πΎ) ∧ (𝑒(leβ€˜πΎ)π‘Š ∧ 𝑒 β‰  (π‘…β€˜πΉ) ∧ 𝑒 β‰  (π‘…β€˜β„Ž)))) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))
356, 34rexlimddv 3158 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (π‘ˆβ€˜πΉ) = (π‘‰β€˜πΉ)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 β‰  ( I β†Ύ 𝐡) ∧ β„Ž ∈ 𝑇)) ∧ β„Ž β‰  ( I β†Ύ 𝐡)) β†’ (π‘ˆβ€˜β„Ž) = (π‘‰β€˜β„Ž))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937  βˆƒwrex 3067   class class class wbr 5152   I cid 5579   β†Ύ cres 5684  β€˜cfv 6553  Basecbs 17187  lecple 17247  Atomscatm 38767  HLchlt 38854  LHypclh 39489  LTrncltrn 39606  trLctrl 39663  TEndoctendo 40257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-riotaBAD 38457
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-undef 8285  df-map 8853  df-proset 18294  df-poset 18312  df-plt 18329  df-lub 18345  df-glb 18346  df-join 18347  df-meet 18348  df-p0 18424  df-p1 18425  df-lat 18431  df-clat 18498  df-oposet 38680  df-ol 38682  df-oml 38683  df-covers 38770  df-ats 38771  df-atl 38802  df-cvlat 38826  df-hlat 38855  df-llines 39003  df-lplanes 39004  df-lvols 39005  df-lines 39006  df-psubsp 39008  df-pmap 39009  df-padd 39301  df-lhyp 39493  df-laut 39494  df-ldil 39609  df-ltrn 39610  df-trl 39664  df-tendo 40260
This theorem is referenced by:  tendocan  40329
  Copyright terms: Public domain W3C validator