Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemj3 Structured version   Visualization version   GIF version

Theorem cdlemj3 39084
Description: Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑔. (Contributed by NM, 20-Jun-2013.)
Hypotheses
Ref Expression
cdlemj.b 𝐵 = (Base‘𝐾)
cdlemj.h 𝐻 = (LHyp‘𝐾)
cdlemj.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemj.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemj.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemj3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))

Proof of Theorem cdlemj3
Dummy variables 𝑔 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 eqid 2736 . . . 4 (le‘𝐾) = (le‘𝐾)
3 eqid 2736 . . . 4 (Atoms‘𝐾) = (Atoms‘𝐾)
4 cdlemj.h . . . 4 𝐻 = (LHyp‘𝐾)
52, 3, 4lhpexle2 38271 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))
61, 5syl 17 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))
7 simpl1l 1223 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL)
87adantr 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝐾 ∈ HL)
9 simpl1r 1224 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → 𝑊𝐻)
109adantr 481 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑊𝐻)
11 simprl 768 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑢 ∈ (Atoms‘𝐾))
12 simprr1 1220 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → 𝑢(le‘𝐾)𝑊)
13 cdlemj.b . . . . 5 𝐵 = (Base‘𝐾)
14 cdlemj.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemj.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
1613, 2, 3, 4, 14, 15cdlemfnid 38825 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))
178, 10, 11, 12, 16syl22anc 836 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → ∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))
18 simp1l 1196 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)))
19 simp1r 1197 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → ≠ ( I ↾ 𝐵))
20 simp3l 1200 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔𝑇)
21 simp3rr 1246 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔 ≠ ( I ↾ 𝐵))
22 simp2r2 1275 . . . . . . . . 9 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅𝐹))
2322necomd 2996 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) ≠ 𝑢)
24 simp3rl 1245 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝑔) = 𝑢)
2523, 24neeqtrrd 3015 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝐹) ≠ (𝑅𝑔))
26 simp2r3 1276 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅))
2724, 26eqnetrd 3008 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅𝑔) ≠ (𝑅))
28 cdlemj.e . . . . . . . 8 𝐸 = ((TEndo‘𝐾)‘𝑊)
2913, 4, 14, 15, 28cdlemj2 39083 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ( ≠ ( I ↾ 𝐵) ∧ 𝑔𝑇𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐹) ≠ (𝑅𝑔) ∧ (𝑅𝑔) ≠ (𝑅))) → (𝑈) = (𝑉))
3018, 19, 20, 21, 25, 27, 29syl132anc 1387 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅))) ∧ (𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)))) → (𝑈) = (𝑉))
31303expia 1120 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → ((𝑔𝑇 ∧ ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵))) → (𝑈) = (𝑉)))
3231expd 416 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (𝑔𝑇 → (((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))))
3332rexlimdv 3146 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (∃𝑔𝑇 ((𝑅𝑔) = 𝑢𝑔 ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉)))
3417, 33mpd 15 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊𝑢 ≠ (𝑅𝐹) ∧ 𝑢 ≠ (𝑅)))) → (𝑈) = (𝑉))
356, 34rexlimddv 3154 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸 ∧ (𝑈𝐹) = (𝑉𝐹)) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑇)) ∧ ≠ ( I ↾ 𝐵)) → (𝑈) = (𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wrex 3070   class class class wbr 5089   I cid 5511  cres 5616  cfv 6473  Basecbs 17001  lecple 17058  Atomscatm 37523  HLchlt 37610  LHypclh 38245  LTrncltrn 38362  trLctrl 38419  TEndoctendo 39013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-riotaBAD 37213
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-1st 7891  df-2nd 7892  df-undef 8151  df-map 8680  df-proset 18102  df-poset 18120  df-plt 18137  df-lub 18153  df-glb 18154  df-join 18155  df-meet 18156  df-p0 18232  df-p1 18233  df-lat 18239  df-clat 18306  df-oposet 37436  df-ol 37438  df-oml 37439  df-covers 37526  df-ats 37527  df-atl 37558  df-cvlat 37582  df-hlat 37611  df-llines 37759  df-lplanes 37760  df-lvols 37761  df-lines 37762  df-psubsp 37764  df-pmap 37765  df-padd 38057  df-lhyp 38249  df-laut 38250  df-ldil 38365  df-ltrn 38366  df-trl 38420  df-tendo 39016
This theorem is referenced by:  tendocan  39085
  Copyright terms: Public domain W3C validator