| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1191 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | eqid 2734 |
. . . 4
⊢
(le‘𝐾) =
(le‘𝐾) |
| 3 | | eqid 2734 |
. . . 4
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 4 | | cdlemj.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | 2, 3, 4 | lhpexle2 39953 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) |
| 6 | 1, 5 | syl 17 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) → ∃𝑢 ∈ (Atoms‘𝐾)(𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) |
| 7 | | simpl1l 1224 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) → 𝐾 ∈ HL) |
| 8 | 7 | adantr 480 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → 𝐾 ∈ HL) |
| 9 | | simpl1r 1225 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) → 𝑊 ∈ 𝐻) |
| 10 | 9 | adantr 480 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → 𝑊 ∈ 𝐻) |
| 11 | | simprl 770 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → 𝑢 ∈ (Atoms‘𝐾)) |
| 12 | | simprr1 1221 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → 𝑢(le‘𝐾)𝑊) |
| 13 | | cdlemj.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 14 | | cdlemj.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 15 | | cdlemj.r |
. . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 16 | 13, 2, 3, 4, 14, 15 | cdlemfnid 40507 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ 𝑢(le‘𝐾)𝑊)) → ∃𝑔 ∈ 𝑇 ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵))) |
| 17 | 8, 10, 11, 12, 16 | syl22anc 838 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → ∃𝑔 ∈ 𝑇 ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵))) |
| 18 | | simp1l 1197 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇))) |
| 19 | | simp1r 1198 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → ℎ ≠ ( I ↾ 𝐵)) |
| 20 | | simp3l 1201 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔 ∈ 𝑇) |
| 21 | | simp3rr 1247 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → 𝑔 ≠ ( I ↾ 𝐵)) |
| 22 | | simp2r2 1276 |
. . . . . . . . 9
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅‘𝐹)) |
| 23 | 22 | necomd 2986 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅‘𝐹) ≠ 𝑢) |
| 24 | | simp3rl 1246 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅‘𝑔) = 𝑢) |
| 25 | 23, 24 | neeqtrrd 3005 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅‘𝐹) ≠ (𝑅‘𝑔)) |
| 26 | | simp2r3 1277 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → 𝑢 ≠ (𝑅‘ℎ)) |
| 27 | 24, 26 | eqnetrd 2998 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → (𝑅‘𝑔) ≠ (𝑅‘ℎ)) |
| 28 | | cdlemj.e |
. . . . . . . 8
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 29 | 13, 4, 14, 15, 28 | cdlemj2 40765 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐹) ≠ (𝑅‘𝑔) ∧ (𝑅‘𝑔) ≠ (𝑅‘ℎ))) → (𝑈‘ℎ) = (𝑉‘ℎ)) |
| 30 | 18, 19, 20, 21, 25, 27, 29 | syl132anc 1389 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ))) ∧ (𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)))) → (𝑈‘ℎ) = (𝑉‘ℎ)) |
| 31 | 30 | 3expia 1121 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → ((𝑔 ∈ 𝑇 ∧ ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵))) → (𝑈‘ℎ) = (𝑉‘ℎ))) |
| 32 | 31 | expd 415 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → (𝑔 ∈ 𝑇 → (((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (𝑈‘ℎ) = (𝑉‘ℎ)))) |
| 33 | 32 | rexlimdv 3140 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → (∃𝑔 ∈ 𝑇 ((𝑅‘𝑔) = 𝑢 ∧ 𝑔 ≠ ( I ↾ 𝐵)) → (𝑈‘ℎ) = (𝑉‘ℎ))) |
| 34 | 17, 33 | mpd 15 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) ∧ (𝑢 ∈ (Atoms‘𝐾) ∧ (𝑢(le‘𝐾)𝑊 ∧ 𝑢 ≠ (𝑅‘𝐹) ∧ 𝑢 ≠ (𝑅‘ℎ)))) → (𝑈‘ℎ) = (𝑉‘ℎ)) |
| 35 | 6, 34 | rexlimddv 3148 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) → (𝑈‘ℎ) = (𝑉‘ℎ)) |