| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simp2r3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
| Ref | Expression |
|---|---|
| simp2r3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr3 1197 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜒) | |
| 2 | 1 | 3ad2ant2 1135 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: poxp3 8175 hash7g 14525 btwnconn1lem8 36095 btwnconn1lem9 36096 btwnconn1lem10 36097 btwnconn1lem11 36098 btwnconn1lem12 36099 cdlemj3 40825 jm2.27 43020 iunrelexpmin2 43725 |
| Copyright terms: Public domain | W3C validator |