MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l2 Structured version   Visualization version   GIF version

Theorem simp3l2 1276
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l2 ((𝜏𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)

Proof of Theorem simp3l2
StepHypRef Expression
1 simpl2 1189 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜓)
213ad2ant3 1132 1 ((𝜏𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  cvmlift2lem10  32567  cdleme36m  37639  cdlemk5u  38039  cdlemk6u  38040  cdlemk21N  38051  cdlemk20  38052  cdlemk27-3  38085  cdlemk28-3  38086
  Copyright terms: Public domain W3C validator