Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk20 Structured version   Visualization version   GIF version

Theorem cdlemk20 40387
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 22, p. 119 for the i=2, j=1 case. Note typo on line 22: f should be fi. Our 𝐷, 𝐢, 𝑂, 𝑄, π‘ˆ, 𝑉 represent their f1, f2, k1, k2, sigma1, sigma2. (Contributed by NM, 5-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b 𝐡 = (Baseβ€˜πΎ)
cdlemk1.l ≀ = (leβ€˜πΎ)
cdlemk1.j ∨ = (joinβ€˜πΎ)
cdlemk1.m ∧ = (meetβ€˜πΎ)
cdlemk1.a 𝐴 = (Atomsβ€˜πΎ)
cdlemk1.h 𝐻 = (LHypβ€˜πΎ)
cdlemk1.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemk1.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
cdlemk1.s 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
cdlemk1.o 𝑂 = (π‘†β€˜π·)
cdlemk1.u π‘ˆ = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((π‘‚β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝐷))))))
cdlemk2a.q 𝑄 = (π‘†β€˜πΆ)
Assertion
Ref Expression
cdlemk20 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((π‘ˆβ€˜πΆ)β€˜π‘ƒ) = (π‘„β€˜π‘ƒ))
Distinct variable groups:   𝑓,𝑖, ∧   ≀ ,𝑖   ∨ ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,π‘Š,𝑖   ∧ ,𝑒   ∨ ,𝑒   𝐷,𝑒,𝑗   𝑒,𝑂   𝑃,𝑒   𝑅,𝑒   𝑇,𝑒   𝑒,π‘Š   ∧ ,𝑗   ≀ ,𝑗   ∨ ,𝑗   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑗,𝑂   𝑃,𝑗   𝑅,𝑗   𝑇,𝑗   𝑗,π‘Š   𝑒,𝐹,𝑓,𝑖   𝐢,𝑒   𝑓,𝑗,𝐢,𝑖
Allowed substitution hints:   𝐴(𝑒,𝑓)   𝐡(𝑒,𝑓,𝑖,𝑗)   𝑄(𝑒,𝑓,𝑖,𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗)   π‘ˆ(𝑒,𝑓,𝑖,𝑗)   𝐻(𝑒,𝑓)   𝐾(𝑒,𝑓)   ≀ (𝑒,𝑓)   𝑁(𝑒)   𝑂(𝑓,𝑖)

Proof of Theorem cdlemk20
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp23 1205 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (π‘…β€˜πΉ) = (π‘…β€˜π‘))
3 simp21r 1288 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ 𝐢 ∈ 𝑇)
4 simp12 1201 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ 𝐹 ∈ 𝑇)
5 simp13 1202 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ 𝐷 ∈ 𝑇)
6 simp21l 1287 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ 𝑁 ∈ 𝑇)
7 simp3r1 1278 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ))
8 simp3r3 1280 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·))
98necomd 2993 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (π‘…β€˜π·) β‰  (π‘…β€˜πΆ))
107, 9jca 510 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΆ)))
11 simp3l1 1275 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ 𝐹 β‰  ( I β†Ύ 𝐡))
12 simp3l3 1277 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ 𝐢 β‰  ( I β†Ύ 𝐡))
13 simp3l2 1276 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ 𝐷 β‰  ( I β†Ύ 𝐡))
1411, 12, 133jca 1125 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)))
15 simp22 1204 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
16 cdlemk1.b . . . 4 𝐡 = (Baseβ€˜πΎ)
17 cdlemk1.l . . . 4 ≀ = (leβ€˜πΎ)
18 cdlemk1.j . . . 4 ∨ = (joinβ€˜πΎ)
19 cdlemk1.m . . . 4 ∧ = (meetβ€˜πΎ)
20 cdlemk1.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
21 cdlemk1.h . . . 4 𝐻 = (LHypβ€˜πΎ)
22 cdlemk1.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
23 cdlemk1.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
24 cdlemk1.s . . . 4 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (π‘–β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘“)) ∧ ((π‘β€˜π‘ƒ) ∨ (π‘…β€˜(𝑓 ∘ ◑𝐹))))))
25 cdlemk1.o . . . 4 𝑂 = (π‘†β€˜π·)
26 cdlemk1.u . . . 4 π‘ˆ = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (π‘—β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜π‘’)) ∧ ((π‘‚β€˜π‘ƒ) ∨ (π‘…β€˜(𝑒 ∘ ◑𝐷))))))
2716, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26cdlemkuv2 40380 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘) ∧ 𝐢 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΆ)) ∧ (𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))) β†’ ((π‘ˆβ€˜πΆ)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΆ)) ∧ ((π‘‚β€˜π‘ƒ) ∨ (π‘…β€˜(𝐢 ∘ ◑𝐷)))))
281, 2, 3, 4, 5, 6, 10, 14, 15, 27syl333anc 1399 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((π‘ˆβ€˜πΆ)β€˜π‘ƒ) = ((𝑃 ∨ (π‘…β€˜πΆ)) ∧ ((π‘‚β€˜π‘ƒ) ∨ (π‘…β€˜(𝐢 ∘ ◑𝐷)))))
2917, 18, 20, 21, 22, 23trljat1 39679 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐢 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ (𝑃 ∨ (π‘…β€˜πΆ)) = (𝑃 ∨ (πΆβ€˜π‘ƒ)))
301, 3, 15, 29syl3anc 1368 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (𝑃 ∨ (π‘…β€˜πΆ)) = (𝑃 ∨ (πΆβ€˜π‘ƒ)))
3125fveq1i 6903 . . . . 5 (π‘‚β€˜π‘ƒ) = ((π‘†β€˜π·)β€˜π‘ƒ)
3231a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (π‘‚β€˜π‘ƒ) = ((π‘†β€˜π·)β€˜π‘ƒ))
3321, 22, 23trlcocnv 40233 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐢 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) β†’ (π‘…β€˜(𝐢 ∘ ◑𝐷)) = (π‘…β€˜(𝐷 ∘ ◑𝐢)))
341, 3, 5, 33syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (π‘…β€˜(𝐢 ∘ ◑𝐷)) = (π‘…β€˜(𝐷 ∘ ◑𝐢)))
3532, 34oveq12d 7444 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((π‘‚β€˜π‘ƒ) ∨ (π‘…β€˜(𝐢 ∘ ◑𝐷))) = (((π‘†β€˜π·)β€˜π‘ƒ) ∨ (π‘…β€˜(𝐷 ∘ ◑𝐢))))
3630, 35oveq12d 7444 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((𝑃 ∨ (π‘…β€˜πΆ)) ∧ ((π‘‚β€˜π‘ƒ) ∨ (π‘…β€˜(𝐢 ∘ ◑𝐷)))) = ((𝑃 ∨ (πΆβ€˜π‘ƒ)) ∧ (((π‘†β€˜π·)β€˜π‘ƒ) ∨ (π‘…β€˜(𝐷 ∘ ◑𝐢)))))
37 cdlemk2a.q . . . 4 𝑄 = (π‘†β€˜πΆ)
3837fveq1i 6903 . . 3 (π‘„β€˜π‘ƒ) = ((π‘†β€˜πΆ)β€˜π‘ƒ)
396, 5jca 510 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (𝑁 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇))
40 simp3r2 1279 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ))
4140, 7jca 510 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)))
4216, 17, 18, 20, 21, 22, 23, 19, 24cdlemk12 40363 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜π·) β‰  (π‘…β€˜πΉ)) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·))) β†’ ((π‘†β€˜πΆ)β€˜π‘ƒ) = ((𝑃 ∨ (πΆβ€˜π‘ƒ)) ∧ (((π‘†β€˜π·)β€˜π‘ƒ) ∨ (π‘…β€˜(𝐷 ∘ ◑𝐢)))))
431, 4, 3, 39, 15, 2, 14, 41, 8, 42syl333anc 1399 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((π‘†β€˜πΆ)β€˜π‘ƒ) = ((𝑃 ∨ (πΆβ€˜π‘ƒ)) ∧ (((π‘†β€˜π·)β€˜π‘ƒ) ∨ (π‘…β€˜(𝐷 ∘ ◑𝐢)))))
4438, 43eqtr2id 2781 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((𝑃 ∨ (πΆβ€˜π‘ƒ)) ∧ (((π‘†β€˜π·)β€˜π‘ƒ) ∨ (π‘…β€˜(𝐷 ∘ ◑𝐢)))) = (π‘„β€˜π‘ƒ))
4528, 36, 443eqtrd 2772 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐢 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (π‘…β€˜πΉ) = (π‘…β€˜π‘)) ∧ ((𝐹 β‰  ( I β†Ύ 𝐡) ∧ 𝐷 β‰  ( I β†Ύ 𝐡) ∧ 𝐢 β‰  ( I β†Ύ 𝐡)) ∧ ((π‘…β€˜π·) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜πΉ) ∧ (π‘…β€˜πΆ) β‰  (π‘…β€˜π·)))) β†’ ((π‘ˆβ€˜πΆ)β€˜π‘ƒ) = (π‘„β€˜π‘ƒ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937   class class class wbr 5152   ↦ cmpt 5235   I cid 5579  β—‘ccnv 5681   β†Ύ cres 5684   ∘ ccom 5686  β€˜cfv 6553  β„©crio 7381  (class class class)co 7426  Basecbs 17189  lecple 17249  joincjn 18312  meetcmee 18313  Atomscatm 38775  HLchlt 38862  LHypclh 39497  LTrncltrn 39614  trLctrl 39671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-riotaBAD 38465
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-undef 8287  df-map 8855  df-proset 18296  df-poset 18314  df-plt 18331  df-lub 18347  df-glb 18348  df-join 18349  df-meet 18350  df-p0 18426  df-p1 18427  df-lat 18433  df-clat 18500  df-oposet 38688  df-ol 38690  df-oml 38691  df-covers 38778  df-ats 38779  df-atl 38810  df-cvlat 38834  df-hlat 38863  df-llines 39011  df-lplanes 39012  df-lvols 39013  df-lines 39014  df-psubsp 39016  df-pmap 39017  df-padd 39309  df-lhyp 39501  df-laut 39502  df-ldil 39617  df-ltrn 39618  df-trl 39672
This theorem is referenced by:  cdlemk20-2N  40405  cdlemk22  40406
  Copyright terms: Public domain W3C validator