Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem10 Structured version   Visualization version   GIF version

Theorem cvmlift2lem10 33274
Description: Lemma for cvmlift2 33278. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem10.1 (𝜑𝑋 ∈ (0[,]1))
cvmlift2lem10.2 (𝜑𝑌 ∈ (0[,]1))
Assertion
Ref Expression
cvmlift2lem10 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐽,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑐,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐻,𝑐,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝐵,𝑐,𝑑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐾,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑤,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑋(𝑠)   𝑌(𝑠)

Proof of Theorem cvmlift2lem10
Dummy variables 𝑏 𝑚 𝑎 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmlift2.g . . . . 5 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
3 iitop 24043 . . . . . . 7 II ∈ Top
4 iiuni 24044 . . . . . . 7 (0[,]1) = II
53, 3, 4, 4txunii 22744 . . . . . 6 ((0[,]1) × (0[,]1)) = (II ×t II)
6 eqid 2738 . . . . . 6 𝐽 = 𝐽
75, 6cnf 22397 . . . . 5 (𝐺 ∈ ((II ×t II) Cn 𝐽) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
82, 7syl 17 . . . 4 (𝜑𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
9 cvmlift2lem10.1 . . . . 5 (𝜑𝑋 ∈ (0[,]1))
10 cvmlift2lem10.2 . . . . 5 (𝜑𝑌 ∈ (0[,]1))
119, 10opelxpd 5627 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
128, 11ffvelrnd 6962 . . 3 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽)
13 cvmlift2lem10.s . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
1413, 6cvmcov 33225 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽) → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
151, 12, 14syl2anc 584 . 2 (𝜑 → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
16 n0 4280 . . . . 5 ((𝑆𝑚) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆𝑚))
17 eleq1 2826 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏)))
18 opelxp 5625 . . . . . . . . . . . . 13 (⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏))
1917, 18bitrdi 287 . . . . . . . . . . . 12 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏)))
2019anbi1d 630 . . . . . . . . . . 11 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
21202rexbidv 3229 . . . . . . . . . 10 (𝑧 = ⟨𝑋, 𝑌⟩ → (∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
222adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
2313cvmsrcl 33226 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑆𝑚) → 𝑚𝐽)
2423ad2antll 726 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝑚𝐽)
25 cnima 22416 . . . . . . . . . . . 12 ((𝐺 ∈ ((II ×t II) Cn 𝐽) ∧ 𝑚𝐽) → (𝐺𝑚) ∈ (II ×t II))
2622, 24, 25syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺𝑚) ∈ (II ×t II))
27 eltx 22719 . . . . . . . . . . . 12 ((II ∈ Top ∧ II ∈ Top) → ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
283, 3, 27mp2an 689 . . . . . . . . . . 11 ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
2926, 28sylib 217 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
3011adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 simprl 768 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
328adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
33 ffn 6600 . . . . . . . . . . . 12 (𝐺:((0[,]1) × (0[,]1))⟶ 𝐽𝐺 Fn ((0[,]1) × (0[,]1)))
34 elpreima 6935 . . . . . . . . . . . 12 (𝐺 Fn ((0[,]1) × (0[,]1)) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3630, 31, 35mpbir2and 710 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚))
3721, 29, 36rspcdva 3562 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
38 iillysconn 33215 . . . . . . . . . . . . 13 II ∈ Locally SConn
39 simplrl 774 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑎 ∈ II)
40 simprll 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑋𝑎)
41 llyi 22625 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋𝑎) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
4238, 39, 40, 41mp3an2i 1465 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
43 simplrr 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑏 ∈ II)
44 simprlr 777 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑌𝑏)
45 llyi 22625 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌𝑏) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
4638, 43, 44, 45mp3an2i 1465 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
47 reeanv 3294 . . . . . . . . . . . . 13 (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) ↔ (∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)))
48 simpl2 1191 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢)
4948a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢))
50 simpr2 1194 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣)
5150a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣))
52 simprl1 1217 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑢𝑎)
53 simprr1 1220 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑣𝑏)
54 xpss12 5604 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑎𝑣𝑏) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
5552, 53, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
56 simplrr 775 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑎 × 𝑏) ⊆ (𝐺𝑚))
5755, 56sstrd 3931 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
5857ex 413 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑢 × 𝑣) ⊆ (𝐺𝑚)))
5949, 51, 583jcad 1128 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚))))
60 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) → (II ↾t 𝑢) ∈ SConn)
61 simp3 1137 . . . . . . . . . . . . . . . . 17 ((𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn) → (II ↾t 𝑣) ∈ SConn)
6260, 61anim12i 613 . . . . . . . . . . . . . . . 16 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))
6359, 62jca2 514 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6463reximdv 3202 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6564reximdv 3202 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6647, 65syl5bir 242 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ((∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6742, 46, 66mp2and 696 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
6867ex 413 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) → (((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6968rexlimdvva 3223 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7037, 69mpd 15 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
71 simp3l1 1277 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑋𝑢)
72 simp3l2 1278 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑌𝑣)
73 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
74 simpl1l 1223 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝜑)
7574, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
7674, 2syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
77 cvmlift2.p . . . . . . . . . . . . . 14 (𝜑𝑃𝐵)
7874, 77syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑃𝐵)
79 cvmlift2.i . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑃) = (0𝐺0))
8074, 79syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐹𝑃) = (0𝐺0))
81 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
82 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
83 df-ov 7278 . . . . . . . . . . . . . 14 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
84 simpl1r 1224 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚)))
8584simpld 495 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
8683, 85eqeltrid 2843 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑋𝐺𝑌) ∈ 𝑚)
8784simprd 496 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑡 ∈ (𝑆𝑚))
88 simpl2l 1225 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑢 ∈ II)
89 simpl2r 1226 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑣 ∈ II)
90 simp3rl 1245 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑢) ∈ SConn)
9190adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ SConn)
92 sconnpconn 33189 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ SConn → (II ↾t 𝑢) ∈ PConn)
93 pconnconn 33193 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ PConn → (II ↾t 𝑢) ∈ Conn)
9491, 92, 933syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ Conn)
95 simp3rr 1246 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑣) ∈ SConn)
9695adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ SConn)
97 sconnpconn 33189 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ SConn → (II ↾t 𝑣) ∈ PConn)
98 pconnconn 33193 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ PConn → (II ↾t 𝑣) ∈ Conn)
9996, 97, 983syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ Conn)
10071adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑋𝑢)
10172adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑌𝑣)
102 simp3l3 1279 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
103102adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
104 simprl 768 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑤𝑣)
105 simprr 770 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
106 eqid 2738 . . . . . . . . . . . . 13 (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏) = (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏)
10773, 75, 76, 78, 80, 81, 82, 13, 86, 87, 88, 89, 94, 99, 100, 101, 103, 104, 105, 106cvmlift2lem9 33273 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))
108107rexlimdvaa 3214 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
10971, 72, 1083jca 1127 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
1101093expia 1120 . . . . . . . . 9 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
111110reximdvva 3206 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11270, 111mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
113112expr 457 . . . . . 6 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
114113exlimdv 1936 . . . . 5 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (∃𝑡 𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11516, 114syl5bi 241 . . . 4 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → ((𝑆𝑚) ≠ ∅ → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
116115expimpd 454 . . 3 (𝜑 → (((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
117116rexlimdvw 3219 . 2 (𝜑 → (∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11815, 117mpd 15 1 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cdif 3884  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  cres 5591  cima 5592  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  crio 7231  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872  [,]cicc 13082  t crest 17131  Topctop 22042   Cn ccn 22375  Conncconn 22562  Locally clly 22615   ×t ctx 22711  Homeochmeo 22904  IIcii 24038  PConncpconn 33181  SConncsconn 33182   CovMap ccvm 33217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cn 22378  df-cnp 22379  df-cmp 22538  df-conn 22563  df-lly 22617  df-nlly 22618  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-ii 24040  df-htpy 24133  df-phtpy 24134  df-phtpc 24155  df-pconn 33183  df-sconn 33184  df-cvm 33218
This theorem is referenced by:  cvmlift2lem12  33276
  Copyright terms: Public domain W3C validator