| Step | Hyp | Ref
| Expression |
| 1 | | cvmlift2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 2 | | cvmlift2.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
| 3 | | iitop 24906 |
. . . . . . 7
⊢ II ∈
Top |
| 4 | | iiuni 24907 |
. . . . . . 7
⊢ (0[,]1) =
∪ II |
| 5 | 3, 3, 4, 4 | txunii 23601 |
. . . . . 6
⊢ ((0[,]1)
× (0[,]1)) = ∪ (II ×t
II) |
| 6 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 7 | 5, 6 | cnf 23254 |
. . . . 5
⊢ (𝐺 ∈ ((II ×t
II) Cn 𝐽) → 𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝐽) |
| 8 | 2, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
| 9 | | cvmlift2lem10.1 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (0[,]1)) |
| 10 | | cvmlift2lem10.2 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (0[,]1)) |
| 11 | 9, 10 | opelxpd 5724 |
. . . 4
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((0[,]1) ×
(0[,]1))) |
| 12 | 8, 11 | ffvelcdmd 7105 |
. . 3
⊢ (𝜑 → (𝐺‘〈𝑋, 𝑌〉) ∈ ∪
𝐽) |
| 13 | | cvmlift2lem10.s |
. . . 4
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) |
| 14 | 13, 6 | cvmcov 35268 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ ∪
𝐽) → ∃𝑚 ∈ 𝐽 ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅)) |
| 15 | 1, 12, 14 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ 𝐽 ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅)) |
| 16 | | n0 4353 |
. . . . 5
⊢ ((𝑆‘𝑚) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆‘𝑚)) |
| 17 | | eleq1 2829 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝑧 ∈ (𝑎 × 𝑏) ↔ 〈𝑋, 𝑌〉 ∈ (𝑎 × 𝑏))) |
| 18 | | opelxp 5721 |
. . . . . . . . . . . . 13
⊢
(〈𝑋, 𝑌〉 ∈ (𝑎 × 𝑏) ↔ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏)) |
| 19 | 17, 18 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝑧 ∈ (𝑎 × 𝑏) ↔ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏))) |
| 20 | 19 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑋, 𝑌〉 → ((𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) ↔ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)))) |
| 21 | 20 | 2rexbidv 3222 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑋, 𝑌〉 → (∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) ↔ ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)))) |
| 22 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
| 23 | 13 | cvmsrcl 35269 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝑆‘𝑚) → 𝑚 ∈ 𝐽) |
| 24 | 23 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 𝑚 ∈ 𝐽) |
| 25 | | cnima 23273 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ ((II ×t
II) Cn 𝐽) ∧ 𝑚 ∈ 𝐽) → (◡𝐺 “ 𝑚) ∈ (II ×t
II)) |
| 26 | 22, 24, 25 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (◡𝐺 “ 𝑚) ∈ (II ×t
II)) |
| 27 | | eltx 23576 |
. . . . . . . . . . . 12
⊢ ((II
∈ Top ∧ II ∈ Top) → ((◡𝐺 “ 𝑚) ∈ (II ×t II) ↔
∀𝑧 ∈ (◡𝐺 “ 𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)))) |
| 28 | 3, 3, 27 | mp2an 692 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ 𝑚) ∈ (II ×t II) ↔
∀𝑧 ∈ (◡𝐺 “ 𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) |
| 29 | 26, 28 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∀𝑧 ∈ (◡𝐺 “ 𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) |
| 30 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 〈𝑋, 𝑌〉 ∈ ((0[,]1) ×
(0[,]1))) |
| 31 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) |
| 32 | 8 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 𝐺:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
| 33 | | ffn 6736 |
. . . . . . . . . . . 12
⊢ (𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝐽 → 𝐺 Fn ((0[,]1) ×
(0[,]1))) |
| 34 | | elpreima 7078 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn ((0[,]1) × (0[,]1))
→ (〈𝑋, 𝑌〉 ∈ (◡𝐺 “ 𝑚) ↔ (〈𝑋, 𝑌〉 ∈ ((0[,]1) × (0[,]1))
∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚))) |
| 35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (〈𝑋, 𝑌〉 ∈ (◡𝐺 “ 𝑚) ↔ (〈𝑋, 𝑌〉 ∈ ((0[,]1) × (0[,]1))
∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚))) |
| 36 | 30, 31, 35 | mpbir2and 713 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 〈𝑋, 𝑌〉 ∈ (◡𝐺 “ 𝑚)) |
| 37 | 21, 29, 36 | rspcdva 3623 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) |
| 38 | | iillysconn 35258 |
. . . . . . . . . . . . 13
⊢ II ∈
Locally SConn |
| 39 | | simplrl 777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑎 ∈ II) |
| 40 | | simprll 779 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑋 ∈ 𝑎) |
| 41 | | llyi 23482 |
. . . . . . . . . . . . 13
⊢ ((II
∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋 ∈ 𝑎) → ∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈
SConn)) |
| 42 | 38, 39, 40, 41 | mp3an2i 1468 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈
SConn)) |
| 43 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑏 ∈ II) |
| 44 | | simprlr 780 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑌 ∈ 𝑏) |
| 45 | | llyi 23482 |
. . . . . . . . . . . . 13
⊢ ((II
∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌 ∈ 𝑏) → ∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈
SConn)) |
| 46 | 38, 43, 44, 45 | mp3an2i 1468 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈
SConn)) |
| 47 | | reeanv 3229 |
. . . . . . . . . . . . 13
⊢
(∃𝑢 ∈ II
∃𝑣 ∈ II ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) ↔
(∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧
∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈
SConn))) |
| 48 | | simpl2 1193 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋 ∈ 𝑢) |
| 49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋 ∈ 𝑢)) |
| 50 | | simpr2 1196 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌 ∈ 𝑣) |
| 51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌 ∈ 𝑣)) |
| 52 | | simprl1 1219 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑢 ⊆ 𝑎) |
| 53 | | simprr1 1222 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑣 ⊆ 𝑏) |
| 54 | | xpss12 5700 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ⊆ 𝑎 ∧ 𝑣 ⊆ 𝑏) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏)) |
| 55 | 52, 53, 54 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏)) |
| 56 | | simplrr 778 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) |
| 57 | 55, 56 | sstrd 3994 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) |
| 58 | 57 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚))) |
| 59 | 49, 51, 58 | 3jcad 1130 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)))) |
| 60 | | simp3 1139 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) → (II
↾t 𝑢)
∈ SConn) |
| 61 | | simp3 1139 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn) → (II
↾t 𝑣)
∈ SConn) |
| 62 | 60, 61 | anim12i 613 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II
↾t 𝑢)
∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) |
| 63 | 59, 62 | jca2 513 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
| 64 | 63 | reximdv 3170 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (∃𝑣 ∈ II ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) →
∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
| 65 | 64 | reximdv 3170 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) →
∃𝑢 ∈ II
∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
| 66 | 47, 65 | biimtrrid 243 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ((∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧
∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) →
∃𝑢 ∈ II
∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
| 67 | 42, 46, 66 | mp2and 699 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) |
| 68 | 67 | ex 412 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) → (((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
| 69 | 68 | rexlimdvva 3213 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
| 70 | 37, 69 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) |
| 71 | | simp3l1 1279 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → 𝑋
∈ 𝑢) |
| 72 | | simp3l2 1280 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → 𝑌
∈ 𝑣) |
| 73 | | cvmlift2.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = ∪
𝐶 |
| 74 | | simpl1l 1225 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝜑) |
| 75 | 74, 1 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| 76 | 74, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
| 77 | | cvmlift2.p |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| 78 | 74, 77 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑃 ∈ 𝐵) |
| 79 | | cvmlift2.i |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
| 80 | 74, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐹‘𝑃) = (0𝐺0)) |
| 81 | | cvmlift2.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
| 82 | | cvmlift2.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) |
| 83 | | df-ov 7434 |
. . . . . . . . . . . . . 14
⊢ (𝑋𝐺𝑌) = (𝐺‘〈𝑋, 𝑌〉) |
| 84 | | simpl1r 1226 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) |
| 85 | 84 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) |
| 86 | 83, 85 | eqeltrid 2845 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝑋𝐺𝑌) ∈ 𝑚) |
| 87 | 84 | simprd 495 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑡 ∈ (𝑆‘𝑚)) |
| 88 | | simpl2l 1227 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑢 ∈ II) |
| 89 | | simpl2r 1228 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑣 ∈ II) |
| 90 | | simp3rl 1247 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (II ↾t 𝑢) ∈ SConn) |
| 91 | 90 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑢)
∈ SConn) |
| 92 | | sconnpconn 35232 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑢)
∈ SConn → (II ↾t 𝑢) ∈ PConn) |
| 93 | | pconnconn 35236 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑢)
∈ PConn → (II ↾t 𝑢) ∈ Conn) |
| 94 | 91, 92, 93 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑢)
∈ Conn) |
| 95 | | simp3rr 1248 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (II ↾t 𝑣) ∈ SConn) |
| 96 | 95 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑣)
∈ SConn) |
| 97 | | sconnpconn 35232 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑣)
∈ SConn → (II ↾t 𝑣) ∈ PConn) |
| 98 | | pconnconn 35236 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑣)
∈ PConn → (II ↾t 𝑣) ∈ Conn) |
| 99 | 96, 97, 98 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑣)
∈ Conn) |
| 100 | 71 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑋 ∈ 𝑢) |
| 101 | 72 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑌 ∈ 𝑣) |
| 102 | | simp3l3 1281 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (𝑢
× 𝑣) ⊆ (◡𝐺 “ 𝑚)) |
| 103 | 102 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) |
| 104 | | simprl 771 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑤 ∈ 𝑣) |
| 105 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶)) |
| 106 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(℩𝑏
∈ 𝑡 (𝑋𝐾𝑌) ∈ 𝑏) = (℩𝑏 ∈ 𝑡 (𝑋𝐾𝑌) ∈ 𝑏) |
| 107 | 73, 75, 76, 78, 80, 81, 82, 13, 86, 87, 88, 89, 94, 99, 100, 101, 103, 104, 105, 106 | cvmlift2lem9 35316 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)) |
| 108 | 107 | rexlimdvaa 3156 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))) |
| 109 | 71, 72, 108 | 3jca 1129 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (𝑋
∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)))) |
| 110 | 109 | 3expia 1122 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)) → (𝑋
∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
| 111 | 110 | reximdvva 3207 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
| 112 | 70, 111 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)))) |
| 113 | 112 | expr 456 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) → (𝑡 ∈ (𝑆‘𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
| 114 | 113 | exlimdv 1933 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) → (∃𝑡 𝑡 ∈ (𝑆‘𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
| 115 | 16, 114 | biimtrid 242 |
. . . 4
⊢ ((𝜑 ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) → ((𝑆‘𝑚) ≠ ∅ → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
| 116 | 115 | expimpd 453 |
. . 3
⊢ (𝜑 → (((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
| 117 | 116 | rexlimdvw 3160 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ 𝐽 ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
| 118 | 15, 117 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)))) |