Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem10 Structured version   Visualization version   GIF version

Theorem cvmlift2lem10 33906
Description: Lemma for cvmlift2 33910. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem10.1 (𝜑𝑋 ∈ (0[,]1))
cvmlift2lem10.2 (𝜑𝑌 ∈ (0[,]1))
Assertion
Ref Expression
cvmlift2lem10 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐽,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑐,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐻,𝑐,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝐵,𝑐,𝑑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐾,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑤,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑋(𝑠)   𝑌(𝑠)

Proof of Theorem cvmlift2lem10
Dummy variables 𝑏 𝑚 𝑎 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmlift2.g . . . . 5 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
3 iitop 24243 . . . . . . 7 II ∈ Top
4 iiuni 24244 . . . . . . 7 (0[,]1) = II
53, 3, 4, 4txunii 22944 . . . . . 6 ((0[,]1) × (0[,]1)) = (II ×t II)
6 eqid 2736 . . . . . 6 𝐽 = 𝐽
75, 6cnf 22597 . . . . 5 (𝐺 ∈ ((II ×t II) Cn 𝐽) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
82, 7syl 17 . . . 4 (𝜑𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
9 cvmlift2lem10.1 . . . . 5 (𝜑𝑋 ∈ (0[,]1))
10 cvmlift2lem10.2 . . . . 5 (𝜑𝑌 ∈ (0[,]1))
119, 10opelxpd 5671 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
128, 11ffvelcdmd 7036 . . 3 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽)
13 cvmlift2lem10.s . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
1413, 6cvmcov 33857 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽) → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
151, 12, 14syl2anc 584 . 2 (𝜑 → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
16 n0 4306 . . . . 5 ((𝑆𝑚) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆𝑚))
17 eleq1 2825 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏)))
18 opelxp 5669 . . . . . . . . . . . . 13 (⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏))
1917, 18bitrdi 286 . . . . . . . . . . . 12 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏)))
2019anbi1d 630 . . . . . . . . . . 11 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
21202rexbidv 3213 . . . . . . . . . 10 (𝑧 = ⟨𝑋, 𝑌⟩ → (∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
222adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
2313cvmsrcl 33858 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑆𝑚) → 𝑚𝐽)
2423ad2antll 727 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝑚𝐽)
25 cnima 22616 . . . . . . . . . . . 12 ((𝐺 ∈ ((II ×t II) Cn 𝐽) ∧ 𝑚𝐽) → (𝐺𝑚) ∈ (II ×t II))
2622, 24, 25syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺𝑚) ∈ (II ×t II))
27 eltx 22919 . . . . . . . . . . . 12 ((II ∈ Top ∧ II ∈ Top) → ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
283, 3, 27mp2an 690 . . . . . . . . . . 11 ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
2926, 28sylib 217 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
3011adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
328adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
33 ffn 6668 . . . . . . . . . . . 12 (𝐺:((0[,]1) × (0[,]1))⟶ 𝐽𝐺 Fn ((0[,]1) × (0[,]1)))
34 elpreima 7008 . . . . . . . . . . . 12 (𝐺 Fn ((0[,]1) × (0[,]1)) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3630, 31, 35mpbir2and 711 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚))
3721, 29, 36rspcdva 3582 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
38 iillysconn 33847 . . . . . . . . . . . . 13 II ∈ Locally SConn
39 simplrl 775 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑎 ∈ II)
40 simprll 777 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑋𝑎)
41 llyi 22825 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋𝑎) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
4238, 39, 40, 41mp3an2i 1466 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
43 simplrr 776 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑏 ∈ II)
44 simprlr 778 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑌𝑏)
45 llyi 22825 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌𝑏) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
4638, 43, 44, 45mp3an2i 1466 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
47 reeanv 3217 . . . . . . . . . . . . 13 (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) ↔ (∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)))
48 simpl2 1192 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢)
4948a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢))
50 simpr2 1195 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣)
5150a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣))
52 simprl1 1218 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑢𝑎)
53 simprr1 1221 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑣𝑏)
54 xpss12 5648 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑎𝑣𝑏) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
5552, 53, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
56 simplrr 776 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑎 × 𝑏) ⊆ (𝐺𝑚))
5755, 56sstrd 3954 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
5857ex 413 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑢 × 𝑣) ⊆ (𝐺𝑚)))
5949, 51, 583jcad 1129 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚))))
60 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) → (II ↾t 𝑢) ∈ SConn)
61 simp3 1138 . . . . . . . . . . . . . . . . 17 ((𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn) → (II ↾t 𝑣) ∈ SConn)
6260, 61anim12i 613 . . . . . . . . . . . . . . . 16 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))
6359, 62jca2 514 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6463reximdv 3167 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6564reximdv 3167 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6647, 65biimtrrid 242 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ((∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6742, 46, 66mp2and 697 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
6867ex 413 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) → (((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6968rexlimdvva 3205 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7037, 69mpd 15 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
71 simp3l1 1278 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑋𝑢)
72 simp3l2 1279 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑌𝑣)
73 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
74 simpl1l 1224 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝜑)
7574, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
7674, 2syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
77 cvmlift2.p . . . . . . . . . . . . . 14 (𝜑𝑃𝐵)
7874, 77syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑃𝐵)
79 cvmlift2.i . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑃) = (0𝐺0))
8074, 79syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐹𝑃) = (0𝐺0))
81 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
82 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
83 df-ov 7360 . . . . . . . . . . . . . 14 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
84 simpl1r 1225 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚)))
8584simpld 495 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
8683, 85eqeltrid 2842 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑋𝐺𝑌) ∈ 𝑚)
8784simprd 496 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑡 ∈ (𝑆𝑚))
88 simpl2l 1226 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑢 ∈ II)
89 simpl2r 1227 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑣 ∈ II)
90 simp3rl 1246 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑢) ∈ SConn)
9190adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ SConn)
92 sconnpconn 33821 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ SConn → (II ↾t 𝑢) ∈ PConn)
93 pconnconn 33825 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ PConn → (II ↾t 𝑢) ∈ Conn)
9491, 92, 933syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ Conn)
95 simp3rr 1247 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑣) ∈ SConn)
9695adantr 481 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ SConn)
97 sconnpconn 33821 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ SConn → (II ↾t 𝑣) ∈ PConn)
98 pconnconn 33825 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ PConn → (II ↾t 𝑣) ∈ Conn)
9996, 97, 983syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ Conn)
10071adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑋𝑢)
10172adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑌𝑣)
102 simp3l3 1280 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
103102adantr 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
104 simprl 769 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑤𝑣)
105 simprr 771 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
106 eqid 2736 . . . . . . . . . . . . 13 (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏) = (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏)
10773, 75, 76, 78, 80, 81, 82, 13, 86, 87, 88, 89, 94, 99, 100, 101, 103, 104, 105, 106cvmlift2lem9 33905 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))
108107rexlimdvaa 3153 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
10971, 72, 1083jca 1128 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
1101093expia 1121 . . . . . . . . 9 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
111110reximdvva 3202 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11270, 111mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
113112expr 457 . . . . . 6 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
114113exlimdv 1936 . . . . 5 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (∃𝑡 𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11516, 114biimtrid 241 . . . 4 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → ((𝑆𝑚) ≠ ∅ → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
116115expimpd 454 . . 3 (𝜑 → (((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
117116rexlimdvw 3157 . 2 (𝜑 → (∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11815, 117mpd 15 1 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  cdif 3907  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560  {csn 4586  cop 4592   cuni 4865  cmpt 5188   × cxp 5631  ccnv 5632  cres 5635  cima 5636  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  crio 7312  (class class class)co 7357  cmpo 7359  0cc0 11051  1c1 11052  [,]cicc 13267  t crest 17302  Topctop 22242   Cn ccn 22575  Conncconn 22762  Locally clly 22815   ×t ctx 22911  Homeochmeo 23104  IIcii 24238  PConncpconn 33813  SConncsconn 33814   CovMap ccvm 33849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-ec 8650  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-cn 22578  df-cnp 22579  df-cmp 22738  df-conn 22763  df-lly 22817  df-nlly 22818  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-ii 24240  df-htpy 24333  df-phtpy 24334  df-phtpc 24355  df-pconn 33815  df-sconn 33816  df-cvm 33850
This theorem is referenced by:  cvmlift2lem12  33908
  Copyright terms: Public domain W3C validator