Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem10 Structured version   Visualization version   GIF version

Theorem cvmlift2lem10 35317
Description: Lemma for cvmlift2 35321. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem10.1 (𝜑𝑋 ∈ (0[,]1))
cvmlift2lem10.2 (𝜑𝑌 ∈ (0[,]1))
Assertion
Ref Expression
cvmlift2lem10 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐽,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑐,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐻,𝑐,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝐵,𝑐,𝑑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐾,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑤,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑋(𝑠)   𝑌(𝑠)

Proof of Theorem cvmlift2lem10
Dummy variables 𝑏 𝑚 𝑎 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmlift2.g . . . . 5 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
3 iitop 24906 . . . . . . 7 II ∈ Top
4 iiuni 24907 . . . . . . 7 (0[,]1) = II
53, 3, 4, 4txunii 23601 . . . . . 6 ((0[,]1) × (0[,]1)) = (II ×t II)
6 eqid 2737 . . . . . 6 𝐽 = 𝐽
75, 6cnf 23254 . . . . 5 (𝐺 ∈ ((II ×t II) Cn 𝐽) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
82, 7syl 17 . . . 4 (𝜑𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
9 cvmlift2lem10.1 . . . . 5 (𝜑𝑋 ∈ (0[,]1))
10 cvmlift2lem10.2 . . . . 5 (𝜑𝑌 ∈ (0[,]1))
119, 10opelxpd 5724 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
128, 11ffvelcdmd 7105 . . 3 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽)
13 cvmlift2lem10.s . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
1413, 6cvmcov 35268 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽) → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
151, 12, 14syl2anc 584 . 2 (𝜑 → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
16 n0 4353 . . . . 5 ((𝑆𝑚) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆𝑚))
17 eleq1 2829 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏)))
18 opelxp 5721 . . . . . . . . . . . . 13 (⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏))
1917, 18bitrdi 287 . . . . . . . . . . . 12 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏)))
2019anbi1d 631 . . . . . . . . . . 11 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
21202rexbidv 3222 . . . . . . . . . 10 (𝑧 = ⟨𝑋, 𝑌⟩ → (∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
222adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
2313cvmsrcl 35269 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑆𝑚) → 𝑚𝐽)
2423ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝑚𝐽)
25 cnima 23273 . . . . . . . . . . . 12 ((𝐺 ∈ ((II ×t II) Cn 𝐽) ∧ 𝑚𝐽) → (𝐺𝑚) ∈ (II ×t II))
2622, 24, 25syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺𝑚) ∈ (II ×t II))
27 eltx 23576 . . . . . . . . . . . 12 ((II ∈ Top ∧ II ∈ Top) → ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
283, 3, 27mp2an 692 . . . . . . . . . . 11 ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
2926, 28sylib 218 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
3011adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
328adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
33 ffn 6736 . . . . . . . . . . . 12 (𝐺:((0[,]1) × (0[,]1))⟶ 𝐽𝐺 Fn ((0[,]1) × (0[,]1)))
34 elpreima 7078 . . . . . . . . . . . 12 (𝐺 Fn ((0[,]1) × (0[,]1)) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3630, 31, 35mpbir2and 713 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚))
3721, 29, 36rspcdva 3623 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
38 iillysconn 35258 . . . . . . . . . . . . 13 II ∈ Locally SConn
39 simplrl 777 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑎 ∈ II)
40 simprll 779 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑋𝑎)
41 llyi 23482 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋𝑎) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
4238, 39, 40, 41mp3an2i 1468 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
43 simplrr 778 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑏 ∈ II)
44 simprlr 780 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑌𝑏)
45 llyi 23482 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌𝑏) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
4638, 43, 44, 45mp3an2i 1468 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
47 reeanv 3229 . . . . . . . . . . . . 13 (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) ↔ (∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)))
48 simpl2 1193 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢)
4948a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢))
50 simpr2 1196 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣)
5150a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣))
52 simprl1 1219 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑢𝑎)
53 simprr1 1222 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑣𝑏)
54 xpss12 5700 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑎𝑣𝑏) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
5552, 53, 54syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
56 simplrr 778 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑎 × 𝑏) ⊆ (𝐺𝑚))
5755, 56sstrd 3994 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
5857ex 412 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑢 × 𝑣) ⊆ (𝐺𝑚)))
5949, 51, 583jcad 1130 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚))))
60 simp3 1139 . . . . . . . . . . . . . . . . 17 ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) → (II ↾t 𝑢) ∈ SConn)
61 simp3 1139 . . . . . . . . . . . . . . . . 17 ((𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn) → (II ↾t 𝑣) ∈ SConn)
6260, 61anim12i 613 . . . . . . . . . . . . . . . 16 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))
6359, 62jca2 513 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6463reximdv 3170 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6564reximdv 3170 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6647, 65biimtrrid 243 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ((∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6742, 46, 66mp2and 699 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
6867ex 412 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) → (((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6968rexlimdvva 3213 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7037, 69mpd 15 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
71 simp3l1 1279 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑋𝑢)
72 simp3l2 1280 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑌𝑣)
73 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
74 simpl1l 1225 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝜑)
7574, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
7674, 2syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
77 cvmlift2.p . . . . . . . . . . . . . 14 (𝜑𝑃𝐵)
7874, 77syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑃𝐵)
79 cvmlift2.i . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑃) = (0𝐺0))
8074, 79syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐹𝑃) = (0𝐺0))
81 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
82 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
83 df-ov 7434 . . . . . . . . . . . . . 14 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
84 simpl1r 1226 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚)))
8584simpld 494 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
8683, 85eqeltrid 2845 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑋𝐺𝑌) ∈ 𝑚)
8784simprd 495 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑡 ∈ (𝑆𝑚))
88 simpl2l 1227 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑢 ∈ II)
89 simpl2r 1228 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑣 ∈ II)
90 simp3rl 1247 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑢) ∈ SConn)
9190adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ SConn)
92 sconnpconn 35232 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ SConn → (II ↾t 𝑢) ∈ PConn)
93 pconnconn 35236 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ PConn → (II ↾t 𝑢) ∈ Conn)
9491, 92, 933syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ Conn)
95 simp3rr 1248 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑣) ∈ SConn)
9695adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ SConn)
97 sconnpconn 35232 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ SConn → (II ↾t 𝑣) ∈ PConn)
98 pconnconn 35236 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ PConn → (II ↾t 𝑣) ∈ Conn)
9996, 97, 983syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ Conn)
10071adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑋𝑢)
10172adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑌𝑣)
102 simp3l3 1281 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
103102adantr 480 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
104 simprl 771 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑤𝑣)
105 simprr 773 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
106 eqid 2737 . . . . . . . . . . . . 13 (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏) = (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏)
10773, 75, 76, 78, 80, 81, 82, 13, 86, 87, 88, 89, 94, 99, 100, 101, 103, 104, 105, 106cvmlift2lem9 35316 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))
108107rexlimdvaa 3156 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
10971, 72, 1083jca 1129 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
1101093expia 1122 . . . . . . . . 9 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
111110reximdvva 3207 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11270, 111mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
113112expr 456 . . . . . 6 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
114113exlimdv 1933 . . . . 5 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (∃𝑡 𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11516, 114biimtrid 242 . . . 4 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → ((𝑆𝑚) ≠ ∅ → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
116115expimpd 453 . . 3 (𝜑 → (((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
117116rexlimdvw 3160 . 2 (𝜑 → (∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11815, 117mpd 15 1 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  cin 3950  wss 3951  c0 4333  𝒫 cpw 4600  {csn 4626  cop 4632   cuni 4907  cmpt 5225   × cxp 5683  ccnv 5684  cres 5687  cima 5688  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  crio 7387  (class class class)co 7431  cmpo 7433  0cc0 11155  1c1 11156  [,]cicc 13390  t crest 17465  Topctop 22899   Cn ccn 23232  Conncconn 23419  Locally clly 23472   ×t ctx 23568  Homeochmeo 23761  IIcii 24901  PConncpconn 35224  SConncsconn 35225   CovMap ccvm 35260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-ec 8747  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-cn 23235  df-cnp 23236  df-cmp 23395  df-conn 23420  df-lly 23474  df-nlly 23475  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-ii 24903  df-cncf 24904  df-htpy 25002  df-phtpy 25003  df-phtpc 25024  df-pconn 35226  df-sconn 35227  df-cvm 35261
This theorem is referenced by:  cvmlift2lem12  35319
  Copyright terms: Public domain W3C validator