Step | Hyp | Ref
| Expression |
1 | | cvmlift2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
2 | | cvmlift2.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
3 | | iitop 23581 |
. . . . . . 7
⊢ II ∈
Top |
4 | | iiuni 23582 |
. . . . . . 7
⊢ (0[,]1) =
∪ II |
5 | 3, 3, 4, 4 | txunii 22293 |
. . . . . 6
⊢ ((0[,]1)
× (0[,]1)) = ∪ (II ×t
II) |
6 | | eqid 2758 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
7 | 5, 6 | cnf 21946 |
. . . . 5
⊢ (𝐺 ∈ ((II ×t
II) Cn 𝐽) → 𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝐽) |
8 | 2, 7 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐺:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
9 | | cvmlift2lem10.1 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (0[,]1)) |
10 | | cvmlift2lem10.2 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ (0[,]1)) |
11 | 9, 10 | opelxpd 5562 |
. . . 4
⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ ((0[,]1) ×
(0[,]1))) |
12 | 8, 11 | ffvelrnd 6843 |
. . 3
⊢ (𝜑 → (𝐺‘〈𝑋, 𝑌〉) ∈ ∪
𝐽) |
13 | | cvmlift2lem10.s |
. . . 4
⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 =
(◡𝐹 “ 𝑘) ∧ ∀𝑐 ∈ 𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐 ∩ 𝑑) = ∅ ∧ (𝐹 ↾ 𝑐) ∈ ((𝐶 ↾t 𝑐)Homeo(𝐽 ↾t 𝑘))))}) |
14 | 13, 6 | cvmcov 32741 |
. . 3
⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ ∪
𝐽) → ∃𝑚 ∈ 𝐽 ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅)) |
15 | 1, 12, 14 | syl2anc 587 |
. 2
⊢ (𝜑 → ∃𝑚 ∈ 𝐽 ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅)) |
16 | | n0 4245 |
. . . . 5
⊢ ((𝑆‘𝑚) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆‘𝑚)) |
17 | | eleq1 2839 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝑧 ∈ (𝑎 × 𝑏) ↔ 〈𝑋, 𝑌〉 ∈ (𝑎 × 𝑏))) |
18 | | opelxp 5560 |
. . . . . . . . . . . . 13
⊢
(〈𝑋, 𝑌〉 ∈ (𝑎 × 𝑏) ↔ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏)) |
19 | 17, 18 | bitrdi 290 |
. . . . . . . . . . . 12
⊢ (𝑧 = 〈𝑋, 𝑌〉 → (𝑧 ∈ (𝑎 × 𝑏) ↔ (𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏))) |
20 | 19 | anbi1d 632 |
. . . . . . . . . . 11
⊢ (𝑧 = 〈𝑋, 𝑌〉 → ((𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) ↔ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)))) |
21 | 20 | 2rexbidv 3224 |
. . . . . . . . . 10
⊢ (𝑧 = 〈𝑋, 𝑌〉 → (∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) ↔ ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)))) |
22 | 2 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
23 | 13 | cvmsrcl 32742 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝑆‘𝑚) → 𝑚 ∈ 𝐽) |
24 | 23 | ad2antll 728 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 𝑚 ∈ 𝐽) |
25 | | cnima 21965 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ ((II ×t
II) Cn 𝐽) ∧ 𝑚 ∈ 𝐽) → (◡𝐺 “ 𝑚) ∈ (II ×t
II)) |
26 | 22, 24, 25 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (◡𝐺 “ 𝑚) ∈ (II ×t
II)) |
27 | | eltx 22268 |
. . . . . . . . . . . 12
⊢ ((II
∈ Top ∧ II ∈ Top) → ((◡𝐺 “ 𝑚) ∈ (II ×t II) ↔
∀𝑧 ∈ (◡𝐺 “ 𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)))) |
28 | 3, 3, 27 | mp2an 691 |
. . . . . . . . . . 11
⊢ ((◡𝐺 “ 𝑚) ∈ (II ×t II) ↔
∀𝑧 ∈ (◡𝐺 “ 𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) |
29 | 26, 28 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∀𝑧 ∈ (◡𝐺 “ 𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) |
30 | 11 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 〈𝑋, 𝑌〉 ∈ ((0[,]1) ×
(0[,]1))) |
31 | | simprl 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) |
32 | 8 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 𝐺:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
33 | | ffn 6498 |
. . . . . . . . . . . 12
⊢ (𝐺:((0[,]1) ×
(0[,]1))⟶∪ 𝐽 → 𝐺 Fn ((0[,]1) ×
(0[,]1))) |
34 | | elpreima 6819 |
. . . . . . . . . . . 12
⊢ (𝐺 Fn ((0[,]1) × (0[,]1))
→ (〈𝑋, 𝑌〉 ∈ (◡𝐺 “ 𝑚) ↔ (〈𝑋, 𝑌〉 ∈ ((0[,]1) × (0[,]1))
∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚))) |
35 | 32, 33, 34 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (〈𝑋, 𝑌〉 ∈ (◡𝐺 “ 𝑚) ↔ (〈𝑋, 𝑌〉 ∈ ((0[,]1) × (0[,]1))
∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚))) |
36 | 30, 31, 35 | mpbir2and 712 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → 〈𝑋, 𝑌〉 ∈ (◡𝐺 “ 𝑚)) |
37 | 21, 29, 36 | rspcdva 3543 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) |
38 | | iillysconn 32731 |
. . . . . . . . . . . . 13
⊢ II ∈
Locally SConn |
39 | | simplrl 776 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑎 ∈ II) |
40 | | simprll 778 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑋 ∈ 𝑎) |
41 | | llyi 22174 |
. . . . . . . . . . . . 13
⊢ ((II
∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋 ∈ 𝑎) → ∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈
SConn)) |
42 | 38, 39, 40, 41 | mp3an2i 1463 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈
SConn)) |
43 | | simplrr 777 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑏 ∈ II) |
44 | | simprlr 779 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → 𝑌 ∈ 𝑏) |
45 | | llyi 22174 |
. . . . . . . . . . . . 13
⊢ ((II
∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌 ∈ 𝑏) → ∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈
SConn)) |
46 | 38, 43, 44, 45 | mp3an2i 1463 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈
SConn)) |
47 | | reeanv 3285 |
. . . . . . . . . . . . 13
⊢
(∃𝑢 ∈ II
∃𝑣 ∈ II ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) ↔
(∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧
∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈
SConn))) |
48 | | simpl2 1189 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋 ∈ 𝑢) |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋 ∈ 𝑢)) |
50 | | simpr2 1192 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌 ∈ 𝑣) |
51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌 ∈ 𝑣)) |
52 | | simprl1 1215 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑢 ⊆ 𝑎) |
53 | | simprr1 1218 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑣 ⊆ 𝑏) |
54 | | xpss12 5539 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑢 ⊆ 𝑎 ∧ 𝑣 ⊆ 𝑏) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏)) |
55 | 52, 53, 54 | syl2anc 587 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏)) |
56 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) |
57 | 55, 56 | sstrd 3902 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) ∧ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) |
58 | 57 | ex 416 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚))) |
59 | 49, 51, 58 | 3jcad 1126 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)))) |
60 | | simp3 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) → (II
↾t 𝑢)
∈ SConn) |
61 | | simp3 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn) → (II
↾t 𝑣)
∈ SConn) |
62 | 60, 61 | anim12i 615 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II
↾t 𝑢)
∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) |
63 | 59, 62 | jca2 517 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
64 | 63 | reximdv 3197 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (∃𝑣 ∈ II ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) →
∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
65 | 64 | reximdv 3197 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) →
∃𝑢 ∈ II
∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
66 | 47, 65 | syl5bir 246 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ((∃𝑢 ∈ II (𝑢 ⊆ 𝑎 ∧ 𝑋 ∈ 𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧
∃𝑣 ∈ II (𝑣 ⊆ 𝑏 ∧ 𝑌 ∈ 𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) →
∃𝑢 ∈ II
∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
67 | 42, 46, 66 | mp2and 698 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) |
68 | 67 | ex 416 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) → (((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
69 | 68 | rexlimdvva 3218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋 ∈ 𝑎 ∧ 𝑌 ∈ 𝑏) ∧ (𝑎 × 𝑏) ⊆ (◡𝐺 “ 𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)))) |
70 | 37, 69 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) |
71 | | simp3l1 1275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → 𝑋
∈ 𝑢) |
72 | | simp3l2 1276 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → 𝑌
∈ 𝑣) |
73 | | cvmlift2.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = ∪
𝐶 |
74 | | simpl1l 1221 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝜑) |
75 | 74, 1 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
76 | 74, 2 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝐺 ∈ ((II ×t II) Cn
𝐽)) |
77 | | cvmlift2.p |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ 𝐵) |
78 | 74, 77 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑃 ∈ 𝐵) |
79 | | cvmlift2.i |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹‘𝑃) = (0𝐺0)) |
80 | 74, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐹‘𝑃) = (0𝐺0)) |
81 | | cvmlift2.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃)) |
82 | | cvmlift2.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((℩𝑓 ∈ (II Cn 𝐶)((𝐹 ∘ 𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻‘𝑥)))‘𝑦)) |
83 | | df-ov 7153 |
. . . . . . . . . . . . . 14
⊢ (𝑋𝐺𝑌) = (𝐺‘〈𝑋, 𝑌〉) |
84 | | simpl1r 1222 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) |
85 | 84 | simpld 498 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) |
86 | 83, 85 | eqeltrid 2856 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝑋𝐺𝑌) ∈ 𝑚) |
87 | 84 | simprd 499 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑡 ∈ (𝑆‘𝑚)) |
88 | | simpl2l 1223 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑢 ∈ II) |
89 | | simpl2r 1224 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑣 ∈ II) |
90 | | simp3rl 1243 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (II ↾t 𝑢) ∈ SConn) |
91 | 90 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑢)
∈ SConn) |
92 | | sconnpconn 32705 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑢)
∈ SConn → (II ↾t 𝑢) ∈ PConn) |
93 | | pconnconn 32709 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑢)
∈ PConn → (II ↾t 𝑢) ∈ Conn) |
94 | 91, 92, 93 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑢)
∈ Conn) |
95 | | simp3rr 1244 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (II ↾t 𝑣) ∈ SConn) |
96 | 95 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑣)
∈ SConn) |
97 | | sconnpconn 32705 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑣)
∈ SConn → (II ↾t 𝑣) ∈ PConn) |
98 | | pconnconn 32709 |
. . . . . . . . . . . . . 14
⊢ ((II
↾t 𝑣)
∈ PConn → (II ↾t 𝑣) ∈ Conn) |
99 | 96, 97, 98 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (II
↾t 𝑣)
∈ Conn) |
100 | 71 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑋 ∈ 𝑢) |
101 | 72 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑌 ∈ 𝑣) |
102 | | simp3l3 1277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (𝑢
× 𝑣) ⊆ (◡𝐺 “ 𝑚)) |
103 | 102 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) |
104 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → 𝑤 ∈ 𝑣) |
105 | | simprr 772 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶)) |
106 | | eqid 2758 |
. . . . . . . . . . . . 13
⊢
(℩𝑏
∈ 𝑡 (𝑋𝐾𝑌) ∈ 𝑏) = (℩𝑏 ∈ 𝑡 (𝑋𝐾𝑌) ∈ 𝑏) |
107 | 73, 75, 76, 78, 80, 81, 82, 13, 86, 87, 88, 89, 94, 99, 100, 101, 103, 104, 105, 106 | cvmlift2lem9 32789 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) ∧ (𝑤
∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)) |
108 | 107 | rexlimdvaa 3209 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))) |
109 | 71, 72, 108 | 3jca 1125 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn))) → (𝑋
∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)))) |
110 | 109 | 3expia 1118 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)) → (𝑋
∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
111 | 110 | reximdvva 3201 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (𝑢 × 𝑣) ⊆ (◡𝐺 “ 𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II
↾t 𝑣)
∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
112 | 70, 111 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ 𝑡 ∈ (𝑆‘𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)))) |
113 | 112 | expr 460 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) → (𝑡 ∈ (𝑆‘𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
114 | 113 | exlimdv 1934 |
. . . . 5
⊢ ((𝜑 ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) → (∃𝑡 𝑡 ∈ (𝑆‘𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
115 | 16, 114 | syl5bi 245 |
. . . 4
⊢ ((𝜑 ∧ (𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚) → ((𝑆‘𝑚) ≠ ∅ → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
116 | 115 | expimpd 457 |
. . 3
⊢ (𝜑 → (((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
117 | 116 | rexlimdvw 3214 |
. 2
⊢ (𝜑 → (∃𝑚 ∈ 𝐽 ((𝐺‘〈𝑋, 𝑌〉) ∈ 𝑚 ∧ (𝑆‘𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶))))) |
118 | 15, 117 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ (∃𝑤 ∈ 𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II)
↾t (𝑢
× {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II)
↾t (𝑢
× 𝑣)) Cn 𝐶)))) |