MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l1 Structured version   Visualization version   GIF version

Theorem simp3l1 1280
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l1 ((𝜏𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜑)

Proof of Theorem simp3l1
StepHypRef Expression
1 simpl1 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant3 1137 1 ((𝜏𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091
This theorem is referenced by:  cvmlift2lem10  33018  poxp3  33567  cdleme26ee  38148  cdleme36m  38249  cdleme40m  38255  cdlemg18b  38467  cdlemk5u  38649  cdlemk6u  38650  cdlemk21N  38661  cdlemk20  38662  cdlemk27-3  38695  cdlemk28-3  38696  dihmeetlem20N  39114
  Copyright terms: Public domain W3C validator