MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3l1 Structured version   Visualization version   GIF version

Theorem simp3l1 1276
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp3l1 ((𝜏𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜑)

Proof of Theorem simp3l1
StepHypRef Expression
1 simpl1 1189 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
213ad2ant3 1133 1 ((𝜏𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  cvmlift2lem10  33174  poxp3  33723  cdleme26ee  38301  cdleme36m  38402  cdleme40m  38408  cdlemg18b  38620  cdlemk5u  38802  cdlemk6u  38803  cdlemk21N  38814  cdlemk20  38815  cdlemk27-3  38848  cdlemk28-3  38849  dihmeetlem20N  39267
  Copyright terms: Public domain W3C validator