Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk21N Structured version   Visualization version   GIF version

Theorem cdlemk21N 37460
Description: Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=0 and j=1. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk1.b 𝐵 = (Base‘𝐾)
cdlemk1.l = (le‘𝐾)
cdlemk1.j = (join‘𝐾)
cdlemk1.m = (meet‘𝐾)
cdlemk1.a 𝐴 = (Atoms‘𝐾)
cdlemk1.h 𝐻 = (LHyp‘𝐾)
cdlemk1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk1.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk1.o 𝑂 = (𝑆𝐷)
cdlemk1.u 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemk21N ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑆𝐺)‘𝑃) = ((𝑈𝐺)‘𝑃))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖   ,𝑒   ,𝑒   𝐷,𝑒,𝑗   𝑒,𝐺,𝑗   𝑒,𝑂   𝑃,𝑒   𝑅,𝑒   𝑇,𝑒   𝑒,𝑊   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝐷,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑗,𝑂   𝑃,𝑗   𝑅,𝑗   𝑇,𝑗   𝑗,𝑊   𝑒,𝐹   𝑖,𝐺,𝑓
Allowed substitution hints:   𝐴(𝑒,𝑓)   𝐵(𝑒,𝑓,𝑖,𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗)   𝑈(𝑒,𝑓,𝑖,𝑗)   𝐻(𝑒,𝑓)   𝐾(𝑒,𝑓)   (𝑒,𝑓)   𝑁(𝑒)   𝑂(𝑓,𝑖)

Proof of Theorem cdlemk21N
StepHypRef Expression
1 simp11 1183 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21r 1271 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → 𝐺𝑇)
3 simp22 1187 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
4 cdlemk1.l . . . . 5 = (le‘𝐾)
5 cdlemk1.j . . . . 5 = (join‘𝐾)
6 cdlemk1.a . . . . 5 𝐴 = (Atoms‘𝐾)
7 cdlemk1.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 cdlemk1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
9 cdlemk1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
104, 5, 6, 7, 8, 9trljat1 36753 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
111, 2, 3, 10syl3anc 1351 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑃 (𝑅𝐺)) = (𝑃 (𝐺𝑃)))
12 cdlemk1.o . . . . . 6 𝑂 = (𝑆𝐷)
1312fveq1i 6500 . . . . 5 (𝑂𝑃) = ((𝑆𝐷)‘𝑃)
1413a1i 11 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑂𝑃) = ((𝑆𝐷)‘𝑃))
15 simp13 1185 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → 𝐷𝑇)
167, 8, 9trlcocnv 37307 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐺𝑇𝐷𝑇) → (𝑅‘(𝐺𝐷)) = (𝑅‘(𝐷𝐺)))
171, 2, 15, 16syl3anc 1351 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑅‘(𝐺𝐷)) = (𝑅‘(𝐷𝐺)))
1814, 17oveq12d 6994 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑂𝑃) (𝑅‘(𝐺𝐷))) = (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐺))))
1911, 18oveq12d 6994 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))) = ((𝑃 (𝐺𝑃)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐺)))))
20 simp23 1188 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑅𝐹) = (𝑅𝑁))
21 simp12 1184 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → 𝐹𝑇)
22 simp21l 1270 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → 𝑁𝑇)
23 simp3r1 1261 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑅𝐷) ≠ (𝑅𝐹))
24 simp3r2 1262 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑅𝐺) ≠ (𝑅𝐷))
2524necomd 3022 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑅𝐷) ≠ (𝑅𝐺))
2623, 25jca 504 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)))
27 simp3l1 1258 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → 𝐹 ≠ ( I ↾ 𝐵))
28 simp3l3 1260 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → 𝐺 ≠ ( I ↾ 𝐵))
29 simp3l2 1259 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → 𝐷 ≠ ( I ↾ 𝐵))
3027, 28, 293jca 1108 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)))
31 cdlemk1.b . . . 4 𝐵 = (Base‘𝐾)
32 cdlemk1.m . . . 4 = (meet‘𝐾)
33 cdlemk1.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
34 cdlemk1.u . . . 4 𝑈 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑂𝑃) (𝑅‘(𝑒𝐷))))))
3531, 4, 5, 32, 6, 7, 8, 9, 33, 12, 34cdlemkuv2 37454 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐹) = (𝑅𝑁) ∧ 𝐺𝑇) ∧ (𝐹𝑇𝐷𝑇𝑁𝑇) ∧ (((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
361, 20, 2, 21, 15, 22, 26, 30, 3, 35syl333anc 1382 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑈𝐺)‘𝑃) = ((𝑃 (𝑅𝐺)) ((𝑂𝑃) (𝑅‘(𝐺𝐷)))))
3722, 15jca 504 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑁𝑇𝐷𝑇))
38 simp3r3 1263 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → (𝑅𝐺) ≠ (𝑅𝐹))
3938, 23jca 504 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)))
4031, 4, 5, 6, 7, 8, 9, 32, 33cdlemk12 37437 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐺𝑇) ∧ ((𝑁𝑇𝐷𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐺) ≠ (𝑅𝐹) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝐷))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐺)))))
411, 21, 2, 37, 3, 20, 30, 39, 24, 40syl333anc 1382 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑆𝐺)‘𝑃) = ((𝑃 (𝐺𝑃)) (((𝑆𝐷)‘𝑃) (𝑅‘(𝐷𝐺)))))
4219, 36, 413eqtr4rd 2825 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ ((𝑁𝑇𝐺𝑇) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅𝐷) ≠ (𝑅𝐹) ∧ (𝑅𝐺) ≠ (𝑅𝐷) ∧ (𝑅𝐺) ≠ (𝑅𝐹)))) → ((𝑆𝐺)‘𝑃) = ((𝑈𝐺)‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967   class class class wbr 4929  cmpt 5008   I cid 5311  ccnv 5406  cres 5409  ccom 5411  cfv 6188  crio 6936  (class class class)co 6976  Basecbs 16339  lecple 16428  joincjn 17412  meetcmee 17413  Atomscatm 35850  HLchlt 35937  LHypclh 36571  LTrncltrn 36688  trLctrl 36745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-riotaBAD 35540
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-undef 7742  df-map 8208  df-proset 17396  df-poset 17414  df-plt 17426  df-lub 17442  df-glb 17443  df-join 17444  df-meet 17445  df-p0 17507  df-p1 17508  df-lat 17514  df-clat 17576  df-oposet 35763  df-ol 35765  df-oml 35766  df-covers 35853  df-ats 35854  df-atl 35885  df-cvlat 35909  df-hlat 35938  df-llines 36085  df-lplanes 36086  df-lvols 36087  df-lines 36088  df-psubsp 36090  df-pmap 36091  df-padd 36383  df-lhyp 36575  df-laut 36576  df-ldil 36691  df-ltrn 36692  df-trl 36746
This theorem is referenced by:  cdlemk21-2N  37478
  Copyright terms: Public domain W3C validator