Proof of Theorem cdlemk21N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1203 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 2 |  | simp21r 1291 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → 𝐺 ∈ 𝑇) | 
| 3 |  | simp22 1207 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) | 
| 4 |  | cdlemk1.l | . . . . 5
⊢  ≤ =
(le‘𝐾) | 
| 5 |  | cdlemk1.j | . . . . 5
⊢  ∨ =
(join‘𝐾) | 
| 6 |  | cdlemk1.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 7 |  | cdlemk1.h | . . . . 5
⊢ 𝐻 = (LHyp‘𝐾) | 
| 8 |  | cdlemk1.t | . . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | 
| 9 |  | cdlemk1.r | . . . . 5
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | 
| 10 | 4, 5, 6, 7, 8, 9 | trljat1 40169 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑃 ∨ (𝑅‘𝐺)) = (𝑃 ∨ (𝐺‘𝑃))) | 
| 11 | 1, 2, 3, 10 | syl3anc 1372 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑃 ∨ (𝑅‘𝐺)) = (𝑃 ∨ (𝐺‘𝑃))) | 
| 12 |  | cdlemk1.o | . . . . . 6
⊢ 𝑂 = (𝑆‘𝐷) | 
| 13 | 12 | fveq1i 6906 | . . . . 5
⊢ (𝑂‘𝑃) = ((𝑆‘𝐷)‘𝑃) | 
| 14 | 13 | a1i 11 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑂‘𝑃) = ((𝑆‘𝐷)‘𝑃)) | 
| 15 |  | simp13 1205 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → 𝐷 ∈ 𝑇) | 
| 16 | 7, 8, 9 | trlcocnv 40723 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) → (𝑅‘(𝐺 ∘ ◡𝐷)) = (𝑅‘(𝐷 ∘ ◡𝐺))) | 
| 17 | 1, 2, 15, 16 | syl3anc 1372 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑅‘(𝐺 ∘ ◡𝐷)) = (𝑅‘(𝐷 ∘ ◡𝐺))) | 
| 18 | 14, 17 | oveq12d 7450 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))) = (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐺)))) | 
| 19 | 11, 18 | oveq12d 7450 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷)))) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐺))))) | 
| 20 |  | simp23 1208 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑅‘𝐹) = (𝑅‘𝑁)) | 
| 21 |  | simp12 1204 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → 𝐹 ∈ 𝑇) | 
| 22 |  | simp21l 1290 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → 𝑁 ∈ 𝑇) | 
| 23 |  | simp3r1 1281 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑅‘𝐷) ≠ (𝑅‘𝐹)) | 
| 24 |  | simp3r2 1282 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑅‘𝐺) ≠ (𝑅‘𝐷)) | 
| 25 | 24 | necomd 2995 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑅‘𝐷) ≠ (𝑅‘𝐺)) | 
| 26 | 23, 25 | jca 511 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺))) | 
| 27 |  | simp3l1 1278 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → 𝐹 ≠ ( I ↾ 𝐵)) | 
| 28 |  | simp3l3 1280 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → 𝐺 ≠ ( I ↾ 𝐵)) | 
| 29 |  | simp3l2 1279 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → 𝐷 ≠ ( I ↾ 𝐵)) | 
| 30 | 27, 28, 29 | 3jca 1128 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵))) | 
| 31 |  | cdlemk1.b | . . . 4
⊢ 𝐵 = (Base‘𝐾) | 
| 32 |  | cdlemk1.m | . . . 4
⊢  ∧ =
(meet‘𝐾) | 
| 33 |  | cdlemk1.s | . . . 4
⊢ 𝑆 = (𝑓 ∈ 𝑇 ↦ (℩𝑖 ∈ 𝑇 (𝑖‘𝑃) = ((𝑃 ∨ (𝑅‘𝑓)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑓 ∘ ◡𝐹)))))) | 
| 34 |  | cdlemk1.u | . . . 4
⊢ 𝑈 = (𝑒 ∈ 𝑇 ↦ (℩𝑗 ∈ 𝑇 (𝑗‘𝑃) = ((𝑃 ∨ (𝑅‘𝑒)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝑒 ∘ ◡𝐷)))))) | 
| 35 | 31, 4, 5, 32, 6, 7,
8, 9, 33, 12, 34 | cdlemkuv2 40870 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅‘𝐹) = (𝑅‘𝑁) ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇) ∧ (((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊))) → ((𝑈‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) | 
| 36 | 1, 20, 2, 21, 15, 22, 26, 30, 3, 35 | syl333anc 1403 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → ((𝑈‘𝐺)‘𝑃) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ ((𝑂‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐷))))) | 
| 37 | 22, 15 | jca 511 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑁 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇)) | 
| 38 |  | simp3r3 1283 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → (𝑅‘𝐺) ≠ (𝑅‘𝐹)) | 
| 39 | 38, 23 | jca 511 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹))) | 
| 40 | 31, 4, 5, 6, 7, 8, 9, 32, 33 | cdlemk12 40853 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐺) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐷) ≠ (𝑅‘𝐹)) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐺))))) | 
| 41 | 1, 21, 2, 37, 3, 20, 30, 39, 24, 40 | syl333anc 1403 | . 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → ((𝑆‘𝐺)‘𝑃) = ((𝑃 ∨ (𝐺‘𝑃)) ∧ (((𝑆‘𝐷)‘𝑃) ∨ (𝑅‘(𝐷 ∘ ◡𝐺))))) | 
| 42 | 19, 36, 41 | 3eqtr4rd 2787 | 1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐷 ∈ 𝑇) ∧ ((𝑁 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ ((𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐷) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐷) ∧ (𝑅‘𝐺) ≠ (𝑅‘𝐹)))) → ((𝑆‘𝐺)‘𝑃) = ((𝑈‘𝐺)‘𝑃)) |