Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk28-3 Structured version   Visualization version   GIF version

Theorem cdlemk28-3 36984
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
Assertion
Ref Expression
cdlemk28-3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝑒,𝑓,𝑖,𝐹   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖,𝑏   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑏,𝑑,𝑆,𝑒,𝑗   𝑇,𝑗   𝑗,𝑊   𝐹,𝑑,𝑒   ,𝑒   𝑓,𝐺,𝑖   ,𝑏   𝐴,𝑏   𝑧,𝑏,𝐵   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏   𝐾,𝑏   𝑁,𝑏   𝑃,𝑏   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑧   𝑌,𝑏,𝑧   𝑧,𝑑,𝑒,𝑓,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑧,𝑒,𝑓,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑃(𝑧)   𝑆(𝑧,𝑓,𝑖)   𝐻(𝑧,𝑒,𝑓,𝑑)   (𝑧,𝑏)   𝐾(𝑧,𝑒,𝑓,𝑑)   (𝑧,𝑓,𝑑)   (𝑧,𝑏)   𝑁(𝑧,𝑒,𝑑)   𝑌(𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemk28-3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1172 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21l 1395 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹𝑇)
3 simp21r 1396 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹 ≠ ( I ↾ 𝐵))
4 simp23 1271 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑁𝑇)
52, 3, 43jca 1164 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇))
6 simp22l 1397 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺𝑇)
7 simp22r 1398 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 ≠ ( I ↾ 𝐵))
8 simp3r 1265 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐹) = (𝑅𝑁))
96, 7, 83jca 1164 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁)))
10 simp3l 1264 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
11 cdlemk3.b . . . 4 𝐵 = (Base‘𝐾)
12 cdlemk3.l . . . 4 = (le‘𝐾)
13 cdlemk3.j . . . 4 = (join‘𝐾)
14 cdlemk3.m . . . 4 = (meet‘𝐾)
15 cdlemk3.a . . . 4 𝐴 = (Atoms‘𝐾)
16 cdlemk3.h . . . 4 𝐻 = (LHyp‘𝐾)
17 cdlemk3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 cdlemk3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
19 cdlemk3.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
20 cdlemk3.u1 . . . 4 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
2111, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk26b-3 36981 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇))
221, 5, 9, 10, 21syl31anc 1498 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇))
23 simp11 1266 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2423ad2ant1 1169 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐹𝑇)
25 simp2l 1262 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑏𝑇)
26 simp123 1412 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑁𝑇)
2724, 25, 263jca 1164 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐹𝑇𝑏𝑇𝑁𝑇))
2863ad2ant1 1169 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐺𝑇)
29 simp2r 1263 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑎𝑇)
3028, 29jca 509 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐺𝑇𝑎𝑇))
31 simp13l 1393 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
32 simp13r 1394 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝐹) = (𝑅𝑁))
3333ad2ant1 1169 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐹 ≠ ( I ↾ 𝐵))
34 simp3l1 1383 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑏 ≠ ( I ↾ 𝐵))
3532, 33, 343jca 1164 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)))
3673ad2ant1 1169 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐺 ≠ ( I ↾ 𝐵))
37 simp3r1 1386 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑎 ≠ ( I ↾ 𝐵))
3836, 37jca 509 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑎 ≠ ( I ↾ 𝐵)))
39 simp3r3 1388 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑎) ≠ (𝑅𝐺))
4039necomd 3055 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝐺) ≠ (𝑅𝑎))
41 simp3r2 1387 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑎) ≠ (𝑅𝐹))
42 simp3l2 1384 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐹))
4340, 41, 423jca 1164 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → ((𝑅𝐺) ≠ (𝑅𝑎) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))
44 simp3l3 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐺))
4544necomd 3055 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝐺) ≠ (𝑅𝑏))
4611, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk27-3 36983 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑏𝑇𝑁𝑇) ∧ (𝐺𝑇𝑎𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑎 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝑎) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑏))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))
4723, 27, 30, 31, 35, 38, 43, 45, 46syl332anc 1526 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))
48473exp 1154 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ((𝑏𝑇𝑎𝑇) → (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))))
4948ralrimivv 3180 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∀𝑏𝑇𝑎𝑇 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺)))
50 neeq1 3062 . . . . 5 (𝑏 = 𝑎 → (𝑏 ≠ ( I ↾ 𝐵) ↔ 𝑎 ≠ ( I ↾ 𝐵)))
51 fveq2 6434 . . . . . 6 (𝑏 = 𝑎 → (𝑅𝑏) = (𝑅𝑎))
5251neeq1d 3059 . . . . 5 (𝑏 = 𝑎 → ((𝑅𝑏) ≠ (𝑅𝐹) ↔ (𝑅𝑎) ≠ (𝑅𝐹)))
5351neeq1d 3059 . . . . 5 (𝑏 = 𝑎 → ((𝑅𝑏) ≠ (𝑅𝐺) ↔ (𝑅𝑎) ≠ (𝑅𝐺)))
5450, 52, 533anbi123d 1566 . . . 4 (𝑏 = 𝑎 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ↔ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))))
55 oveq1 6913 . . . 4 (𝑏 = 𝑎 → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))
5654, 55reusv3 5106 . . 3 (∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇) → (∀𝑏𝑇𝑎𝑇 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺)) ↔ ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺))))
5756biimpd 221 . 2 (∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇) → (∀𝑏𝑇𝑎𝑇 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺)) → ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺))))
5822, 49, 57sylc 65 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 3000  wral 3118  wrex 3119   class class class wbr 4874  cmpt 4953   I cid 5250  ccnv 5342  cres 5345  ccom 5347  cfv 6124  crio 6866  (class class class)co 6906  cmpt2 6908  Basecbs 16223  lecple 16313  joincjn 17298  meetcmee 17299  Atomscatm 35339  HLchlt 35426  LHypclh 36060  LTrncltrn 36177  trLctrl 36234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-riotaBAD 35029
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4660  df-iun 4743  df-iin 4744  df-br 4875  df-opab 4937  df-mpt 4954  df-id 5251  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-1st 7429  df-2nd 7430  df-undef 7665  df-map 8125  df-proset 17282  df-poset 17300  df-plt 17312  df-lub 17328  df-glb 17329  df-join 17330  df-meet 17331  df-p0 17393  df-p1 17394  df-lat 17400  df-clat 17462  df-oposet 35252  df-ol 35254  df-oml 35255  df-covers 35342  df-ats 35343  df-atl 35374  df-cvlat 35398  df-hlat 35427  df-llines 35574  df-lplanes 35575  df-lvols 35576  df-lines 35577  df-psubsp 35579  df-pmap 35580  df-padd 35872  df-lhyp 36064  df-laut 36065  df-ldil 36180  df-ltrn 36181  df-trl 36235
This theorem is referenced by:  cdlemk29-3  36987
  Copyright terms: Public domain W3C validator