Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (πΎ β HL β§ π β π»)) |
2 | | simp21l 1290 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β πΉ β π) |
3 | | simp21r 1291 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β πΉ β ( I βΎ π΅)) |
4 | | simp23 1208 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β π β π) |
5 | 2, 3, 4 | 3jca 1128 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (πΉ β π β§ πΉ β ( I βΎ π΅) β§ π β π)) |
6 | | simp22l 1292 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β πΊ β π) |
7 | | simp22r 1293 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β πΊ β ( I βΎ π΅)) |
8 | | simp3r 1202 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (π
βπΉ) = (π
βπ)) |
9 | 6, 7, 8 | 3jca 1128 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (πΊ β π β§ πΊ β ( I βΎ π΅) β§ (π
βπΉ) = (π
βπ))) |
10 | | simp3l 1201 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β (π β π΄ β§ Β¬ π β€ π)) |
11 | | cdlemk3.b |
. . . 4
β’ π΅ = (BaseβπΎ) |
12 | | cdlemk3.l |
. . . 4
β’ β€ =
(leβπΎ) |
13 | | cdlemk3.j |
. . . 4
β’ β¨ =
(joinβπΎ) |
14 | | cdlemk3.m |
. . . 4
β’ β§ =
(meetβπΎ) |
15 | | cdlemk3.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
16 | | cdlemk3.h |
. . . 4
β’ π» = (LHypβπΎ) |
17 | | cdlemk3.t |
. . . 4
β’ π = ((LTrnβπΎ)βπ) |
18 | | cdlemk3.r |
. . . 4
β’ π
= ((trLβπΎ)βπ) |
19 | | cdlemk3.s |
. . . 4
β’ π = (π β π β¦ (β©π β π (πβπ) = ((π β¨ (π
βπ)) β§ ((πβπ) β¨ (π
β(π β β‘πΉ)))))) |
20 | | cdlemk3.u1 |
. . . 4
β’ π = (π β π, π β π β¦ (β©π β π (πβπ) = ((π β¨ (π
βπ)) β§ (((πβπ)βπ) β¨ (π
β(π β β‘π)))))) |
21 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdlemk26b-3 39764 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΉ β ( I βΎ π΅) β§ π β π) β§ (πΊ β π β§ πΊ β ( I βΎ π΅) β§ (π
βπΉ) = (π
βπ))) β§ (π β π΄ β§ Β¬ π β€ π)) β βπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (πππΊ) β π)) |
22 | 1, 5, 9, 10, 21 | syl31anc 1373 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β βπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (πππΊ) β π)) |
23 | | simp11 1203 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πΎ β HL β§ π β π»)) |
24 | 2 | 3ad2ant1 1133 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β πΉ β π) |
25 | | simp2l 1199 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β π β π) |
26 | | simp123 1307 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β π β π) |
27 | 24, 25, 26 | 3jca 1128 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πΉ β π β§ π β π β§ π β π)) |
28 | 6 | 3ad2ant1 1133 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β πΊ β π) |
29 | | simp2r 1200 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β π β π) |
30 | 28, 29 | jca 512 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πΊ β π β§ π β π)) |
31 | | simp13l 1288 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π β π΄ β§ Β¬ π β€ π)) |
32 | | simp13r 1289 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπΉ) = (π
βπ)) |
33 | 3 | 3ad2ant1 1133 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β πΉ β ( I βΎ π΅)) |
34 | | simp3l1 1278 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β π β ( I βΎ π΅)) |
35 | 32, 33, 34 | 3jca 1128 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β ((π
βπΉ) = (π
βπ) β§ πΉ β ( I βΎ π΅) β§ π β ( I βΎ π΅))) |
36 | 7 | 3ad2ant1 1133 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β πΊ β ( I βΎ π΅)) |
37 | | simp3r1 1281 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β π β ( I βΎ π΅)) |
38 | 36, 37 | jca 512 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πΊ β ( I βΎ π΅) β§ π β ( I βΎ π΅))) |
39 | | simp3r3 1283 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπ) β (π
βπΊ)) |
40 | 39 | necomd 2996 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπΊ) β (π
βπ)) |
41 | | simp3r2 1282 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπ) β (π
βπΉ)) |
42 | | simp3l2 1279 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπ) β (π
βπΉ)) |
43 | 40, 41, 42 | 3jca 1128 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β ((π
βπΊ) β (π
βπ) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΉ))) |
44 | | simp3l3 1280 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπ) β (π
βπΊ)) |
45 | 44 | necomd 2996 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (π
βπΊ) β (π
βπ)) |
46 | 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 | cdlemk27-3 39766 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (πΉ β π β§ π β π β§ π β π) β§ (πΊ β π β§ π β π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ ((π
βπΉ) = (π
βπ) β§ πΉ β ( I βΎ π΅) β§ π β ( I βΎ π΅)) β§ (πΊ β ( I βΎ π΅) β§ π β ( I βΎ π΅))) β§ (((π
βπΊ) β (π
βπ) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΉ)) β§ (π
βπΊ) β (π
βπ))) β (πππΊ) = (πππΊ)) |
47 | 23, 27, 30, 31, 35, 38, 43, 45, 46 | syl332anc 1401 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β§ (π β π β§ π β π) β§ ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) β (πππΊ) = (πππΊ)) |
48 | 47 | 3exp 1119 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β ((π β π β§ π β π) β (((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ))) β (πππΊ) = (πππΊ)))) |
49 | 48 | ralrimivv 3198 |
. 2
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β βπ β π βπ β π (((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ))) β (πππΊ) = (πππΊ))) |
50 | | neeq1 3003 |
. . . . 5
β’ (π = π β (π β ( I βΎ π΅) β π β ( I βΎ π΅))) |
51 | | fveq2 6888 |
. . . . . 6
β’ (π = π β (π
βπ) = (π
βπ)) |
52 | 51 | neeq1d 3000 |
. . . . 5
β’ (π = π β ((π
βπ) β (π
βπΉ) β (π
βπ) β (π
βπΉ))) |
53 | 51 | neeq1d 3000 |
. . . . 5
β’ (π = π β ((π
βπ) β (π
βπΊ) β (π
βπ) β (π
βπΊ))) |
54 | 50, 52, 53 | 3anbi123d 1436 |
. . . 4
β’ (π = π β ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)))) |
55 | | oveq1 7412 |
. . . 4
β’ (π = π β (πππΊ) = (πππΊ)) |
56 | 54, 55 | reusv3 5402 |
. . 3
β’
(βπ β
π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (πππΊ) β π) β (βπ β π βπ β π (((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ))) β (πππΊ) = (πππΊ)) β βπ§ β π βπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β π§ = (πππΊ)))) |
57 | 56 | biimpd 228 |
. 2
β’
(βπ β
π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (πππΊ) β π) β (βπ β π βπ β π (((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β§ (π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ))) β (πππΊ) = (πππΊ)) β βπ§ β π βπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β π§ = (πππΊ)))) |
58 | 22, 49, 57 | sylc 65 |
1
β’ (((πΎ β HL β§ π β π») β§ ((πΉ β π β§ πΉ β ( I βΎ π΅)) β§ (πΊ β π β§ πΊ β ( I βΎ π΅)) β§ π β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π
βπΉ) = (π
βπ))) β βπ§ β π βπ β π ((π β ( I βΎ π΅) β§ (π
βπ) β (π
βπΉ) β§ (π
βπ) β (π
βπΊ)) β π§ = (πππΊ))) |