Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk28-3 Structured version   Visualization version   GIF version

Theorem cdlemk28-3 41017
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 14-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
Assertion
Ref Expression
cdlemk28-3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝑒,𝑓,𝑖,𝐹   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖,𝑏   ,𝑗   ,𝑗   ,𝑗   𝐴,𝑗   𝑗,𝐹   𝑗,𝐻   𝑗,𝐾   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑏,𝑑,𝑆,𝑒,𝑗   𝑇,𝑗   𝑗,𝑊   𝐹,𝑑,𝑒   ,𝑒   𝑓,𝐺,𝑖   ,𝑏   𝐴,𝑏   𝑧,𝑏,𝐵   𝐹,𝑏,𝑧   𝐺,𝑏,𝑧   𝐻,𝑏   𝐾,𝑏   𝑁,𝑏   𝑃,𝑏   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑧   𝑌,𝑏,𝑧   𝑧,𝑑,𝑒,𝑓,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑧,𝑒,𝑓,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑃(𝑧)   𝑆(𝑧,𝑓,𝑖)   𝐻(𝑧,𝑒,𝑓,𝑑)   (𝑧,𝑏)   𝐾(𝑧,𝑒,𝑓,𝑑)   (𝑧,𝑓,𝑑)   (𝑧,𝑏)   𝑁(𝑧,𝑒,𝑑)   𝑌(𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemk28-3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp21l 1291 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹𝑇)
3 simp21r 1292 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐹 ≠ ( I ↾ 𝐵))
4 simp23 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝑁𝑇)
52, 3, 43jca 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇))
6 simp22l 1293 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺𝑇)
7 simp22r 1294 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → 𝐺 ≠ ( I ↾ 𝐵))
8 simp3r 1203 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑅𝐹) = (𝑅𝑁))
96, 7, 83jca 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁)))
10 simp3l 1202 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
11 cdlemk3.b . . . 4 𝐵 = (Base‘𝐾)
12 cdlemk3.l . . . 4 = (le‘𝐾)
13 cdlemk3.j . . . 4 = (join‘𝐾)
14 cdlemk3.m . . . 4 = (meet‘𝐾)
15 cdlemk3.a . . . 4 𝐴 = (Atoms‘𝐾)
16 cdlemk3.h . . . 4 𝐻 = (LHyp‘𝐾)
17 cdlemk3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
18 cdlemk3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
19 cdlemk3.s . . . 4 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
20 cdlemk3.u1 . . . 4 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
2111, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk26b-3 41014 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑁𝑇) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇))
221, 5, 9, 10, 21syl31anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇))
23 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2423ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐹𝑇)
25 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑏𝑇)
26 simp123 1308 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑁𝑇)
2724, 25, 263jca 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐹𝑇𝑏𝑇𝑁𝑇))
2863ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐺𝑇)
29 simp2r 1201 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑎𝑇)
3028, 29jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐺𝑇𝑎𝑇))
31 simp13l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
32 simp13r 1290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝐹) = (𝑅𝑁))
3333ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐹 ≠ ( I ↾ 𝐵))
34 simp3l1 1279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑏 ≠ ( I ↾ 𝐵))
3532, 33, 343jca 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)))
3673ad2ant1 1133 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝐺 ≠ ( I ↾ 𝐵))
37 simp3r1 1282 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → 𝑎 ≠ ( I ↾ 𝐵))
3836, 37jca 511 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑎 ≠ ( I ↾ 𝐵)))
39 simp3r3 1284 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑎) ≠ (𝑅𝐺))
4039necomd 2983 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝐺) ≠ (𝑅𝑎))
41 simp3r2 1283 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑎) ≠ (𝑅𝐹))
42 simp3l2 1280 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐹))
4340, 41, 423jca 1128 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → ((𝑅𝐺) ≠ (𝑅𝑎) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐹)))
44 simp3l3 1281 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝑏) ≠ (𝑅𝐺))
4544necomd 2983 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑅𝐺) ≠ (𝑅𝑏))
4611, 12, 13, 14, 15, 16, 17, 18, 19, 20cdlemk27-3 41016 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝑏𝑇𝑁𝑇) ∧ (𝐺𝑇𝑎𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ ((𝑅𝐹) = (𝑅𝑁) ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ 𝑏 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ≠ ( I ↾ 𝐵) ∧ 𝑎 ≠ ( I ↾ 𝐵))) ∧ (((𝑅𝐺) ≠ (𝑅𝑎) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐹)) ∧ (𝑅𝐺) ≠ (𝑅𝑏))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))
4723, 27, 30, 31, 35, 38, 43, 45, 46syl332anc 1403 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) ∧ (𝑏𝑇𝑎𝑇) ∧ ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺)))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))
48473exp 1119 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ((𝑏𝑇𝑎𝑇) → (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))))
4948ralrimivv 3173 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∀𝑏𝑇𝑎𝑇 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺)))
50 neeq1 2990 . . . . 5 (𝑏 = 𝑎 → (𝑏 ≠ ( I ↾ 𝐵) ↔ 𝑎 ≠ ( I ↾ 𝐵)))
51 fveq2 6822 . . . . . 6 (𝑏 = 𝑎 → (𝑅𝑏) = (𝑅𝑎))
5251neeq1d 2987 . . . . 5 (𝑏 = 𝑎 → ((𝑅𝑏) ≠ (𝑅𝐹) ↔ (𝑅𝑎) ≠ (𝑅𝐹)))
5351neeq1d 2987 . . . . 5 (𝑏 = 𝑎 → ((𝑅𝑏) ≠ (𝑅𝐺) ↔ (𝑅𝑎) ≠ (𝑅𝐺)))
5450, 52, 533anbi123d 1438 . . . 4 (𝑏 = 𝑎 → ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ↔ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))))
55 oveq1 7353 . . . 4 (𝑏 = 𝑎 → (𝑏𝑌𝐺) = (𝑎𝑌𝐺))
5654, 55reusv3 5341 . . 3 (∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇) → (∀𝑏𝑇𝑎𝑇 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺)) ↔ ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺))))
5756biimpd 229 . 2 (∃𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑏𝑌𝐺) ∈ 𝑇) → (∀𝑏𝑇𝑎𝑇 (((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) ∧ (𝑎 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑎) ≠ (𝑅𝐹) ∧ (𝑅𝑎) ≠ (𝑅𝐺))) → (𝑏𝑌𝐺) = (𝑎𝑌𝐺)) → ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺))))
5822, 49, 57sylc 65 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵)) ∧ 𝑁𝑇) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁))) → ∃𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝐺)) → 𝑧 = (𝑏𝑌𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5089  cmpt 5170   I cid 5508  ccnv 5613  cres 5616  ccom 5618  cfv 6481  crio 7302  (class class class)co 7346  cmpo 7348  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39372  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  trLctrl 40267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268
This theorem is referenced by:  cdlemk29-3  41020
  Copyright terms: Public domain W3C validator