![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > simplbi2comtVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of simplbi2comt 496.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
simplbi2comt 496 is simplbi2comtVD 39873 without virtual deductions and was
automatically derived from simplbi2comtVD 39873.
|
Ref | Expression |
---|---|
simplbi2comtVD | ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idn1 39549 | . . . . 5 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜑 ↔ (𝜓 ∧ 𝜒)) ) | |
2 | biimpr 212 | . . . . 5 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → ((𝜓 ∧ 𝜒) → 𝜑)) | |
3 | 1, 2 | e1a 39611 | . . . 4 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ ((𝜓 ∧ 𝜒) → 𝜑) ) |
4 | pm3.3 440 | . . . 4 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (𝜓 → (𝜒 → 𝜑))) | |
5 | 3, 4 | e1a 39611 | . . 3 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜓 → (𝜒 → 𝜑)) ) |
6 | pm2.04 90 | . . 3 ⊢ ((𝜓 → (𝜒 → 𝜑)) → (𝜒 → (𝜓 → 𝜑))) | |
7 | 5, 6 | e1a 39611 | . 2 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜒 → (𝜓 → 𝜑)) ) |
8 | 7 | in1 39546 | 1 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-vd1 39545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |