Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  simplbi2comtVD Structured version   Visualization version   GIF version

Theorem simplbi2comtVD 44859
Description: Virtual deduction proof of simplbi2comt 501. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. simplbi2comt 501 is simplbi2comtVD 44859 without virtual deductions and was automatically derived from simplbi2comtVD 44859.
1:: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜑 ↔ ( 𝜓𝜒))   )
2:1: (   (𝜑 ↔ (𝜓𝜒))   ▶   ((𝜓𝜒 ) → 𝜑)   )
3:2: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜓 → (𝜒 𝜑))   )
4:3: (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜒 → (𝜓 𝜑))   )
qed:4: ((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓 𝜑)))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simplbi2comtVD ((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))

Proof of Theorem simplbi2comtVD
StepHypRef Expression
1 idn1 44545 . . . . 5 (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜑 ↔ (𝜓𝜒))   )
2 biimpr 220 . . . . 5 ((𝜑 ↔ (𝜓𝜒)) → ((𝜓𝜒) → 𝜑))
31, 2e1a 44598 . . . 4 (   (𝜑 ↔ (𝜓𝜒))   ▶   ((𝜓𝜒) → 𝜑)   )
4 pm3.3 448 . . . 4 (((𝜓𝜒) → 𝜑) → (𝜓 → (𝜒𝜑)))
53, 4e1a 44598 . . 3 (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜓 → (𝜒𝜑))   )
6 pm2.04 90 . . 3 ((𝜓 → (𝜒𝜑)) → (𝜒 → (𝜓𝜑)))
75, 6e1a 44598 . 2 (   (𝜑 ↔ (𝜓𝜒))   ▶   (𝜒 → (𝜓𝜑))   )
87in1 44542 1 ((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-vd1 44541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator