| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > simplbi2comtVD | Structured version Visualization version GIF version | ||
Description: Virtual deduction proof of simplbi2comt 501.
The following User's Proof is a Virtual Deduction proof completed
automatically by the tools program completeusersproof.cmd, which invokes
Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant.
simplbi2comt 501 is simplbi2comtVD 45007 without virtual deductions and was
automatically derived from simplbi2comtVD 45007.
|
| Ref | Expression |
|---|---|
| simplbi2comtVD | ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idn1 44694 | . . . . 5 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜑 ↔ (𝜓 ∧ 𝜒)) ) | |
| 2 | biimpr 220 | . . . . 5 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → ((𝜓 ∧ 𝜒) → 𝜑)) | |
| 3 | 1, 2 | e1a 44747 | . . . 4 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ ((𝜓 ∧ 𝜒) → 𝜑) ) |
| 4 | pm3.3 448 | . . . 4 ⊢ (((𝜓 ∧ 𝜒) → 𝜑) → (𝜓 → (𝜒 → 𝜑))) | |
| 5 | 3, 4 | e1a 44747 | . . 3 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜓 → (𝜒 → 𝜑)) ) |
| 6 | pm2.04 90 | . . 3 ⊢ ((𝜓 → (𝜒 → 𝜑)) → (𝜒 → (𝜓 → 𝜑))) | |
| 7 | 5, 6 | e1a 44747 | . 2 ⊢ ( (𝜑 ↔ (𝜓 ∧ 𝜒)) ▶ (𝜒 → (𝜓 → 𝜑)) ) |
| 8 | 7 | in1 44691 | 1 ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd1 44690 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |