Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem3VD Structured version   Visualization version   GIF version

Theorem onfrALTlem3VD 42396
Description: Virtual deduction proof of onfrALTlem3 42053. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 42053 is onfrALTlem3VD 42396 without virtual deductions and was automatically derived from onfrALTlem3VD 42396.
1:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
2:: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
3:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
4:1: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 On   )
5:3,4: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
6:5: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
7:6: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We 𝑥   )
8:: (𝑎𝑥) ⊆ 𝑥
9:7,8: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We (𝑎𝑥)   )
10:9: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E Fr (𝑎𝑥)   )
11:10: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅)   )
12:: 𝑥 ∈ V
13:12,8: (𝑎𝑥) ∈ V
14:13,11: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅)   )
15:: ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏(𝑏𝑦) = ∅) ↔ (((𝑎 𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)( (𝑎𝑥) ∩ 𝑦) = ∅))
16:14,15: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ ( 𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)   )
17:: (𝑎𝑥) ⊆ (𝑎𝑥)
18:2: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ¬ (𝑎𝑥) = ∅   )
19:18: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑎𝑥) ≠ ∅   )
20:17,19: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎 𝑥) ≠ ∅)   )
qed:16,20: (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦 ) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem3VD (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )
Distinct variable groups:   𝑦,𝑎   𝑥,𝑦

Proof of Theorem onfrALTlem3VD
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 vex 3426 . . . . 5 𝑥 ∈ V
2 inss2 4160 . . . . 5 (𝑎𝑥) ⊆ 𝑥
31, 2ssexi 5241 . . . 4 (𝑎𝑥) ∈ V
4 idn2 42122 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   )
5 simpl 482 . . . . . . . . . . 11 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → 𝑥𝑎)
64, 5e2 42140 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥𝑎   )
7 idn1 42083 . . . . . . . . . . 11 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   )
8 simpl 482 . . . . . . . . . . 11 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ On)
97, 8e1a 42136 . . . . . . . . . 10 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   )
10 ssel 3910 . . . . . . . . . . 11 (𝑎 ⊆ On → (𝑥𝑎𝑥 ∈ On))
1110com12 32 . . . . . . . . . 10 (𝑥𝑎 → (𝑎 ⊆ On → 𝑥 ∈ On))
126, 9, 11e21 42239 . . . . . . . . 9 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑥 ∈ On   )
13 eloni 6261 . . . . . . . . 9 (𝑥 ∈ On → Ord 𝑥)
1412, 13e2 42140 . . . . . . . 8 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   Ord 𝑥   )
15 ordwe 6264 . . . . . . . 8 (Ord 𝑥 → E We 𝑥)
1614, 15e2 42140 . . . . . . 7 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We 𝑥   )
17 wess 5567 . . . . . . . 8 ((𝑎𝑥) ⊆ 𝑥 → ( E We 𝑥 → E We (𝑎𝑥)))
1817com12 32 . . . . . . 7 ( E We 𝑥 → ((𝑎𝑥) ⊆ 𝑥 → E We (𝑎𝑥)))
1916, 2, 18e20 42236 . . . . . 6 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E We (𝑎𝑥)   )
20 wefr 5570 . . . . . 6 ( E We (𝑎𝑥) → E Fr (𝑎𝑥))
2119, 20e2 42140 . . . . 5 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    E Fr (𝑎𝑥)   )
22 dfepfr 5565 . . . . . 6 ( E Fr (𝑎𝑥) ↔ ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅))
2322biimpi 215 . . . . 5 ( E Fr (𝑎𝑥) → ∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅))
2421, 23e2 42140 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)   )
25 spsbc 3724 . . . 4 ((𝑎𝑥) ∈ V → (∀𝑏((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) → [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)))
263, 24, 25e02 42206 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   [(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅)   )
27 onfrALTlem5 42051 . . 3 ([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
2826, 27e2bi 42141 . 2 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅)   )
29 ssid 3939 . . 3 (𝑎𝑥) ⊆ (𝑎𝑥)
30 simpr 484 . . . . 5 ((𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅) → ¬ (𝑎𝑥) = ∅)
314, 30e2 42140 . . . 4 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶    ¬ (𝑎𝑥) = ∅   )
32 df-ne 2943 . . . . 5 ((𝑎𝑥) ≠ ∅ ↔ ¬ (𝑎𝑥) = ∅)
3332biimpri 227 . . . 4 (¬ (𝑎𝑥) = ∅ → (𝑎𝑥) ≠ ∅)
3431, 33e2 42140 . . 3 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   (𝑎𝑥) ≠ ∅   )
35 pm3.2 469 . . 3 ((𝑎𝑥) ⊆ (𝑎𝑥) → ((𝑎𝑥) ≠ ∅ → ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)))
3629, 34, 35e02 42206 . 2 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   ((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅)   )
37 id 22 . 2 ((((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅) → (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))
3828, 36, 37e22 42180 1 (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  wne 2942  wrex 3064  Vcvv 3422  [wsbc 3711  cin 3882  wss 3883  c0 4253   E cep 5485   Fr wfr 5532   We wwe 5534  Ord word 6250  Oncon0 6251  (   wvd2 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-vd1 42079  df-vd2 42087
This theorem is referenced by:  onfrALTlem2VD  42398
  Copyright terms: Public domain W3C validator