MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr12 Structured version   Visualization version   GIF version

Theorem simpr12 1260
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr12 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)

Proof of Theorem simpr12
StepHypRef Expression
1 simpr2 1197 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2antr1 1190 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091
This theorem is referenced by:  poxp3  33533  cgr3tr4  34091  btwnoutside  34164  paddasslem8  37578  cdleme27a  38118  itsclc0yqe  45780
  Copyright terms: Public domain W3C validator