Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgr3tr4 Structured version   Visualization version   GIF version

Theorem cgr3tr4 34117
Description: Transitivity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.)
Assertion
Ref Expression
cgr3tr4 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩) → ⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩))

Proof of Theorem cgr3tr4
StepHypRef Expression
1 3an6 1448 . . 3 (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩) ∧ (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩)) ↔ ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩)))
2 simpl 486 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝑁 ∈ ℕ)
3 simpr11 1259 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁))
4 simpr12 1260 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐵 ∈ (𝔼‘𝑁))
5 simpr21 1262 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐷 ∈ (𝔼‘𝑁))
6 simpr22 1263 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐸 ∈ (𝔼‘𝑁))
7 simpr31 1265 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐺 ∈ (𝔼‘𝑁))
8 simpr32 1266 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐻 ∈ (𝔼‘𝑁))
9 axcgrtr 27030 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐸 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩) → ⟨𝐷, 𝐸⟩Cgr⟨𝐺, 𝐻⟩))
102, 3, 4, 5, 6, 7, 8, 9syl133anc 1395 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩) → ⟨𝐷, 𝐸⟩Cgr⟨𝐺, 𝐻⟩))
11 simpr13 1261 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐶 ∈ (𝔼‘𝑁))
12 simpr23 1264 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐹 ∈ (𝔼‘𝑁))
13 simpr33 1267 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → 𝐼 ∈ (𝔼‘𝑁))
14 axcgrtr 27030 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁))) → ((⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩) → ⟨𝐷, 𝐹⟩Cgr⟨𝐺, 𝐼⟩))
152, 3, 11, 5, 12, 7, 13, 14syl133anc 1395 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩) → ⟨𝐷, 𝐹⟩Cgr⟨𝐺, 𝐼⟩))
16 axcgrtr 27030 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩) → ⟨𝐸, 𝐹⟩Cgr⟨𝐻, 𝐼⟩))
172, 4, 11, 6, 12, 8, 13, 16syl133anc 1395 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩) → ⟨𝐸, 𝐹⟩Cgr⟨𝐻, 𝐼⟩))
1810, 15, 173anim123d 1445 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩) ∧ (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩) ∧ (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩)) → (⟨𝐷, 𝐸⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐻, 𝐼⟩)))
191, 18syl5bir 246 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → (((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩)) → (⟨𝐷, 𝐸⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐻, 𝐼⟩)))
20 brcgr3 34111 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
21203adant3r3 1186 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
22 brcgr3 34111 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩)))
23223adant3r2 1185 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩)))
2421, 23anbi12d 634 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩) ↔ ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩) ∧ (⟨𝐴, 𝐵⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐻, 𝐼⟩))))
25 brcgr3 34111 . . 3 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁))) → (⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩ ↔ (⟨𝐷, 𝐸⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐻, 𝐼⟩)))
26253adant3r1 1184 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → (⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩ ↔ (⟨𝐷, 𝐸⟩Cgr⟨𝐺, 𝐻⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐺, 𝐼⟩ ∧ ⟨𝐸, 𝐹⟩Cgr⟨𝐻, 𝐼⟩)))
2719, 24, 263imtr4d 297 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩) → ⟨𝐷, ⟨𝐸, 𝐹⟩⟩Cgr3⟨𝐺, ⟨𝐻, 𝐼⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089  wcel 2111  cop 4561   class class class wbr 5067  cfv 6397  cn 11854  𝔼cee 27003  Cgrccgr 27005  Cgr3ccgr3 34101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-iun 4920  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-er 8411  df-map 8530  df-en 8647  df-dom 8648  df-sdom 8649  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-nn 11855  df-n0 12115  df-z 12201  df-uz 12463  df-fz 13120  df-seq 13599  df-sum 15274  df-ee 27006  df-cgr 27008  df-cgr3 34106
This theorem is referenced by:  btwnxfr  34121
  Copyright terms: Public domain W3C validator