Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem8 Structured version   Visualization version   GIF version

Theorem paddasslem8 39814
Description: Lemma for paddass 39825. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
paddasslem.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddasslem8 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))

Proof of Theorem paddasslem8
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝐾 ∈ HL)
21hllatd 39350 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝐾 ∈ Lat)
3 simpl21 1252 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑋𝐴)
4 simpl22 1253 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑌𝐴)
5 paddasslem.a . . . 4 𝐴 = (Atoms‘𝐾)
6 paddasslem.p . . . 4 + = (+𝑃𝐾)
75, 6paddssat 39801 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) ⊆ 𝐴)
81, 3, 4, 7syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → (𝑋 + 𝑌) ⊆ 𝐴)
9 simpl23 1254 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑍𝐴)
10 simpr11 1258 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑥𝑋)
11 simpr12 1259 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑦𝑌)
12 simpl3r 1230 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑠𝐴)
13 simpr2 1196 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑠 (𝑥 𝑦))
14 paddasslem.l . . . 4 = (le‘𝐾)
15 paddasslem.j . . . 4 = (join‘𝐾)
1614, 15, 5, 6elpaddri 39789 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑥𝑋𝑦𝑌) ∧ (𝑠𝐴𝑠 (𝑥 𝑦))) → 𝑠 ∈ (𝑋 + 𝑌))
172, 3, 4, 10, 11, 12, 13, 16syl322anc 1400 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑠 ∈ (𝑋 + 𝑌))
18 simpr13 1260 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑧𝑍)
19 simpl3l 1229 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑝𝐴)
20 simpr3 1197 . 2 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑝 (𝑠 𝑧))
2114, 15, 5, 6elpaddri 39789 . 2 (((𝐾 ∈ Lat ∧ (𝑋 + 𝑌) ⊆ 𝐴𝑍𝐴) ∧ (𝑠 ∈ (𝑋 + 𝑌) ∧ 𝑧𝑍) ∧ (𝑝𝐴𝑝 (𝑠 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
222, 8, 9, 17, 18, 19, 20, 21syl322anc 1400 1 (((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴) ∧ (𝑝𝐴𝑠𝐴)) ∧ ((𝑥𝑋𝑦𝑌𝑧𝑍) ∧ 𝑠 (𝑥 𝑦) ∧ 𝑝 (𝑠 𝑧))) → 𝑝 ∈ ((𝑋 + 𝑌) + 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911   class class class wbr 5102  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18252  Latclat 18372  Atomscatm 39249  HLchlt 39336  +𝑃cpadd 39782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-lub 18285  df-join 18287  df-lat 18373  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-padd 39783
This theorem is referenced by:  paddasslem9  39815
  Copyright terms: Public domain W3C validator