Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme27a Structured version   Visualization version   GIF version

Theorem cdleme27a 40334
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme26f 40330 with s and t swapped (this case is not mentioned by them). If s t v, then f(s) fs(t) v. TODO: FIX COMMENT. (Contributed by NM, 3-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme27a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑧,𝑉   𝑊,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑉(𝑢,𝑡,𝑠)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme27a
StepHypRef Expression
1 simp211 1312 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp221 1315 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp222 1316 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp213 1314 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
5 simp223 1317 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
6 simp23r 1296 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑉𝐴𝑉 𝑊))
7 simp212 1313 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑃𝑄)
8 simp1l 1198 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
9 simp1r 1199 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
107, 8, 93jca 1128 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)))
11 simp3 1138 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡 𝑉) = (𝑃 𝑄))
12 cdleme26.b . . . . . . . 8 𝐵 = (Base‘𝐾)
13 cdleme26.l . . . . . . . 8 = (le‘𝐾)
14 cdleme26.j . . . . . . . 8 = (join‘𝐾)
15 cdleme26.m . . . . . . . 8 = (meet‘𝐾)
16 cdleme26.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
17 cdleme26.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
18 cdleme27.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
19 cdleme27.z . . . . . . . 8 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
20 cdleme27.n . . . . . . . 8 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
21 cdleme27.o . . . . . . . 8 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
22 cdleme27.d . . . . . . . 8 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
23 cdleme27.e . . . . . . . 8 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
2412, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23cdleme26ee 40327 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (𝑡 𝑉) = (𝑃 𝑄))) → 𝐷 (𝐸 𝑉))
251, 2, 3, 4, 5, 6, 10, 11, 24syl332anc 1403 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
26253expia 1121 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) = (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
27 simp1r 1199 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
28 simp11l 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ HL)
29283ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐾 ∈ HL)
30 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝐴)
31303ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝐴)
32 simp23l 1295 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑡𝐴)
33323ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡𝐴)
34 simp3ll 1245 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝑡)
35343ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝑡)
3631, 33, 353jca 1128 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑠𝐴𝑡𝐴𝑠𝑡))
37 simp21l 1291 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝐴)
38373ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝐴)
39 simp22l 1293 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑄𝐴)
40393ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑄𝐴)
41 simp212 1313 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝑄)
42 simp3rl 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐴)
43423ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑉𝐴)
44 simp3 1138 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑡 𝑉) ≠ (𝑃 𝑄))
45 simp3lr 1246 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠 (𝑡 𝑉))
46453ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑡 𝑉))
47 simp1l 1198 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
4844, 46, 473jca 1128 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))
4913, 14, 15, 16, 17cdleme22b 40308 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑠𝐴𝑡𝐴𝑠𝑡)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
5029, 36, 38, 40, 41, 43, 48, 49syl232anc 1399 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ¬ 𝑡 (𝑃 𝑄))
5127, 50pm2.21dd 195 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
52513expia 1121 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) ≠ (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
5326, 52pm2.61dne 3011 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐸 𝑉))
54 cdleme27.c . . . . . 6 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
55 iftrue 4490 . . . . . 6 (𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐷)
5654, 55eqtrid 2776 . . . . 5 (𝑠 (𝑃 𝑄) → 𝐶 = 𝐷)
5756ad2antrr 726 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
58 cdleme27.y . . . . . . 7 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
59 iftrue 4490 . . . . . . 7 (𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐸)
6058, 59eqtrid 2776 . . . . . 6 (𝑡 (𝑃 𝑄) → 𝑌 = 𝐸)
6160oveq1d 7384 . . . . 5 (𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐸 𝑉))
6261ad2antlr 727 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
6353, 57, 623brtr4d 5134 . . 3 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
6463ex 412 . 2 ((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
65 simpr11 1258 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
66 simpr12 1259 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
67 simpll 766 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑠 (𝑃 𝑄))
6866, 67jca 511 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑠 (𝑃 𝑄)))
69 simpr23 1263 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
70 simpr21 1261 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
71 simpr22 1262 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
72 simpr13 1260 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
73 simplr 768 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
74 simpr3l 1235 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
75 simpr3r 1236 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
76 cdleme27.g . . . . . 6 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
77 eqid 2729 . . . . . 6 ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))
78 eqid 2729 . . . . . . 7 (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))))) = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
7919, 20, 76, 77, 22, 78cdleme25cv 40325 . . . . . 6 𝐷 = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
8012, 13, 14, 15, 16, 17, 18, 76, 77, 79cdleme26f 40330 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑠 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐷 (𝐺 𝑉))
8165, 68, 69, 70, 71, 72, 73, 74, 75, 80syl333anc 1404 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐺 𝑉))
8256ad2antrr 726 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
83 iffalse 4493 . . . . . . 7 𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐺)
8458, 83eqtrid 2776 . . . . . 6 𝑡 (𝑃 𝑄) → 𝑌 = 𝐺)
8584oveq1d 7384 . . . . 5 𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐺 𝑉))
8685ad2antlr 727 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
8781, 82, 863brtr4d 5134 . . 3 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
8887ex 412 . 2 ((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
89 simpr11 1258 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
90 simpr12 1259 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
91 simplr 768 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑡 (𝑃 𝑄))
9290, 91jca 511 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑡 (𝑃 𝑄)))
93 simpr13 1260 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
94 simpr21 1261 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
95 simpr22 1262 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
96 simpr23 1263 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
97 simpll 766 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
98 simpr3l 1235 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
99 simpr3r 1236 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
100 cdleme27.f . . . . . 6 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
101 eqid 2729 . . . . . 6 ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))
102 eqid 2729 . . . . . . 7 (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))))) = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10319, 21, 100, 101, 23, 102cdleme25cv 40325 . . . . . 6 𝐸 = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10412, 13, 14, 15, 16, 17, 18, 100, 101, 103cdleme26f2 40332 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑡 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (¬ 𝑠 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐸 𝑉))
10589, 92, 93, 94, 95, 96, 97, 98, 99, 104syl333anc 1404 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐸 𝑉))
106 iffalse 4493 . . . . . 6 𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐹)
10754, 106eqtrid 2776 . . . . 5 𝑠 (𝑃 𝑄) → 𝐶 = 𝐹)
108107ad2antrr 726 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
10961ad2antlr 727 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
110105, 108, 1093brtr4d 5134 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
111110ex 412 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
112 simpr11 1258 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
113 simpr23 1263 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
114 simplr 768 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
115 simpll 766 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
116 simpr12 1259 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
117114, 115, 1163jca 1128 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄))
118 simpr21 1261 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
119 simpr22 1262 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
120 simpr13 1260 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
121 simpr3l 1235 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
122 simpr3r 1236 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
12313, 14, 15, 16, 17, 18, 100, 76cdleme22g 40315 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))
124112, 113, 117, 118, 119, 120, 121, 122, 123syl323anc 1402 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐺 𝑉))
125107ad2antrr 726 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
12685ad2antlr 727 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
127124, 125, 1263brtr4d 5134 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
128127ex 412 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
12964, 88, 111, 1284cases 1040 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  ifcif 4484   class class class wbr 5102  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Atomscatm 39229  HLchlt 39316  LHypclh 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955
This theorem is referenced by:  cdleme27N  40336  cdleme28a  40337
  Copyright terms: Public domain W3C validator