Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme27a Structured version   Visualization version   GIF version

Theorem cdleme27a 40539
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme26f 40535 with s and t swapped (this case is not mentioned by them). If s t v, then f(s) fs(t) v. TODO: FIX COMMENT. (Contributed by NM, 3-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme27a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑧,𝑉   𝑊,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑉(𝑢,𝑡,𝑠)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme27a
StepHypRef Expression
1 simp211 1312 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp221 1315 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp222 1316 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp213 1314 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
5 simp223 1317 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
6 simp23r 1296 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑉𝐴𝑉 𝑊))
7 simp212 1313 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑃𝑄)
8 simp1l 1198 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
9 simp1r 1199 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
107, 8, 93jca 1128 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)))
11 simp3 1138 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡 𝑉) = (𝑃 𝑄))
12 cdleme26.b . . . . . . . 8 𝐵 = (Base‘𝐾)
13 cdleme26.l . . . . . . . 8 = (le‘𝐾)
14 cdleme26.j . . . . . . . 8 = (join‘𝐾)
15 cdleme26.m . . . . . . . 8 = (meet‘𝐾)
16 cdleme26.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
17 cdleme26.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
18 cdleme27.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
19 cdleme27.z . . . . . . . 8 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
20 cdleme27.n . . . . . . . 8 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
21 cdleme27.o . . . . . . . 8 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
22 cdleme27.d . . . . . . . 8 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
23 cdleme27.e . . . . . . . 8 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
2412, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23cdleme26ee 40532 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (𝑡 𝑉) = (𝑃 𝑄))) → 𝐷 (𝐸 𝑉))
251, 2, 3, 4, 5, 6, 10, 11, 24syl332anc 1403 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
26253expia 1121 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) = (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
27 simp1r 1199 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
28 simp11l 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ HL)
29283ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐾 ∈ HL)
30 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝐴)
31303ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝐴)
32 simp23l 1295 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑡𝐴)
33323ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡𝐴)
34 simp3ll 1245 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝑡)
35343ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝑡)
3631, 33, 353jca 1128 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑠𝐴𝑡𝐴𝑠𝑡))
37 simp21l 1291 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝐴)
38373ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝐴)
39 simp22l 1293 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑄𝐴)
40393ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑄𝐴)
41 simp212 1313 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝑄)
42 simp3rl 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐴)
43423ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑉𝐴)
44 simp3 1138 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑡 𝑉) ≠ (𝑃 𝑄))
45 simp3lr 1246 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠 (𝑡 𝑉))
46453ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑡 𝑉))
47 simp1l 1198 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
4844, 46, 473jca 1128 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))
4913, 14, 15, 16, 17cdleme22b 40513 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑠𝐴𝑡𝐴𝑠𝑡)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
5029, 36, 38, 40, 41, 43, 48, 49syl232anc 1399 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ¬ 𝑡 (𝑃 𝑄))
5127, 50pm2.21dd 195 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
52513expia 1121 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) ≠ (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
5326, 52pm2.61dne 3015 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐸 𝑉))
54 cdleme27.c . . . . . 6 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
55 iftrue 4482 . . . . . 6 (𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐷)
5654, 55eqtrid 2780 . . . . 5 (𝑠 (𝑃 𝑄) → 𝐶 = 𝐷)
5756ad2antrr 726 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
58 cdleme27.y . . . . . . 7 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
59 iftrue 4482 . . . . . . 7 (𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐸)
6058, 59eqtrid 2780 . . . . . 6 (𝑡 (𝑃 𝑄) → 𝑌 = 𝐸)
6160oveq1d 7370 . . . . 5 (𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐸 𝑉))
6261ad2antlr 727 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
6353, 57, 623brtr4d 5127 . . 3 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
6463ex 412 . 2 ((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
65 simpr11 1258 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
66 simpr12 1259 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
67 simpll 766 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑠 (𝑃 𝑄))
6866, 67jca 511 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑠 (𝑃 𝑄)))
69 simpr23 1263 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
70 simpr21 1261 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
71 simpr22 1262 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
72 simpr13 1260 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
73 simplr 768 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
74 simpr3l 1235 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
75 simpr3r 1236 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
76 cdleme27.g . . . . . 6 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
77 eqid 2733 . . . . . 6 ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))
78 eqid 2733 . . . . . . 7 (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))))) = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
7919, 20, 76, 77, 22, 78cdleme25cv 40530 . . . . . 6 𝐷 = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
8012, 13, 14, 15, 16, 17, 18, 76, 77, 79cdleme26f 40535 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑠 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐷 (𝐺 𝑉))
8165, 68, 69, 70, 71, 72, 73, 74, 75, 80syl333anc 1404 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐺 𝑉))
8256ad2antrr 726 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
83 iffalse 4485 . . . . . . 7 𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐺)
8458, 83eqtrid 2780 . . . . . 6 𝑡 (𝑃 𝑄) → 𝑌 = 𝐺)
8584oveq1d 7370 . . . . 5 𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐺 𝑉))
8685ad2antlr 727 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
8781, 82, 863brtr4d 5127 . . 3 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
8887ex 412 . 2 ((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
89 simpr11 1258 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
90 simpr12 1259 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
91 simplr 768 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑡 (𝑃 𝑄))
9290, 91jca 511 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑡 (𝑃 𝑄)))
93 simpr13 1260 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
94 simpr21 1261 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
95 simpr22 1262 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
96 simpr23 1263 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
97 simpll 766 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
98 simpr3l 1235 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
99 simpr3r 1236 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
100 cdleme27.f . . . . . 6 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
101 eqid 2733 . . . . . 6 ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))
102 eqid 2733 . . . . . . 7 (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))))) = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10319, 21, 100, 101, 23, 102cdleme25cv 40530 . . . . . 6 𝐸 = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10412, 13, 14, 15, 16, 17, 18, 100, 101, 103cdleme26f2 40537 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑡 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (¬ 𝑠 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐸 𝑉))
10589, 92, 93, 94, 95, 96, 97, 98, 99, 104syl333anc 1404 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐸 𝑉))
106 iffalse 4485 . . . . . 6 𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐹)
10754, 106eqtrid 2780 . . . . 5 𝑠 (𝑃 𝑄) → 𝐶 = 𝐹)
108107ad2antrr 726 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
10961ad2antlr 727 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
110105, 108, 1093brtr4d 5127 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
111110ex 412 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
112 simpr11 1258 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
113 simpr23 1263 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
114 simplr 768 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
115 simpll 766 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
116 simpr12 1259 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
117114, 115, 1163jca 1128 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄))
118 simpr21 1261 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
119 simpr22 1262 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
120 simpr13 1260 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
121 simpr3l 1235 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
122 simpr3r 1236 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
12313, 14, 15, 16, 17, 18, 100, 76cdleme22g 40520 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))
124112, 113, 117, 118, 119, 120, 121, 122, 123syl323anc 1402 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐺 𝑉))
125107ad2antrr 726 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
12685ad2antlr 727 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
127124, 125, 1263brtr4d 5127 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
128127ex 412 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
12964, 88, 111, 1284cases 1040 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  ifcif 4476   class class class wbr 5095  cfv 6489  crio 7311  (class class class)co 7355  Basecbs 17127  lecple 17175  joincjn 18225  meetcmee 18226  Atomscatm 39435  HLchlt 39522  LHypclh 40156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-riotaBAD 39125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-undef 8212  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-p1 18338  df-lat 18346  df-clat 18413  df-oposet 39348  df-ol 39350  df-oml 39351  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-llines 39670  df-lplanes 39671  df-lvols 39672  df-lines 39673  df-psubsp 39675  df-pmap 39676  df-padd 39968  df-lhyp 40160
This theorem is referenced by:  cdleme27N  40541  cdleme28a  40542
  Copyright terms: Public domain W3C validator