Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme27a Structured version   Visualization version   GIF version

Theorem cdleme27a 40368
Description: Part of proof of Lemma E in [Crawley] p. 113. cdleme26f 40364 with s and t swapped (this case is not mentioned by them). If s t v, then f(s) fs(t) v. TODO: FIX COMMENT. (Contributed by NM, 3-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme27a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑧,𝑉   𝑊,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑉(𝑢,𝑡,𝑠)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme27a
StepHypRef Expression
1 simp211 1312 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp221 1315 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp222 1316 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp213 1314 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
5 simp223 1317 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
6 simp23r 1296 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑉𝐴𝑉 𝑊))
7 simp212 1313 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑃𝑄)
8 simp1l 1198 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
9 simp1r 1199 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
107, 8, 93jca 1128 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)))
11 simp3 1138 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → (𝑡 𝑉) = (𝑃 𝑄))
12 cdleme26.b . . . . . . . 8 𝐵 = (Base‘𝐾)
13 cdleme26.l . . . . . . . 8 = (le‘𝐾)
14 cdleme26.j . . . . . . . 8 = (join‘𝐾)
15 cdleme26.m . . . . . . . 8 = (meet‘𝐾)
16 cdleme26.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
17 cdleme26.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
18 cdleme27.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
19 cdleme27.z . . . . . . . 8 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
20 cdleme27.n . . . . . . . 8 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
21 cdleme27.o . . . . . . . 8 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
22 cdleme27.d . . . . . . . 8 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
23 cdleme27.e . . . . . . . 8 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
2412, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23cdleme26ee 40361 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (𝑉𝐴𝑉 𝑊)) ∧ ((𝑃𝑄𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (𝑡 𝑉) = (𝑃 𝑄))) → 𝐷 (𝐸 𝑉))
251, 2, 3, 4, 5, 6, 10, 11, 24syl332anc 1403 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) = (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
26253expia 1121 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) = (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
27 simp1r 1199 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡 (𝑃 𝑄))
28 simp11l 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐾 ∈ HL)
29283ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐾 ∈ HL)
30 simp13l 1289 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝐴)
31303ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝐴)
32 simp23l 1295 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑡𝐴)
33323ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑡𝐴)
34 simp3ll 1245 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠𝑡)
35343ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠𝑡)
3631, 33, 353jca 1128 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑠𝐴𝑡𝐴𝑠𝑡))
37 simp21l 1291 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑃𝐴)
38373ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝐴)
39 simp22l 1293 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑄𝐴)
40393ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑄𝐴)
41 simp212 1313 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑃𝑄)
42 simp3rl 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑉𝐴)
43423ad2ant2 1134 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑉𝐴)
44 simp3 1138 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → (𝑡 𝑉) ≠ (𝑃 𝑄))
45 simp3lr 1246 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝑠 (𝑡 𝑉))
46453ad2ant2 1134 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑡 𝑉))
47 simp1l 1198 . . . . . . . . 9 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝑠 (𝑃 𝑄))
4844, 46, 473jca 1128 . . . . . . . 8 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))
4913, 14, 15, 16, 17cdleme22b 40342 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑠𝐴𝑡𝐴𝑠𝑡)) ∧ (𝑃𝐴𝑄𝐴𝑃𝑄) ∧ (𝑉𝐴 ∧ ((𝑡 𝑉) ≠ (𝑃 𝑄) ∧ 𝑠 (𝑡 𝑉) ∧ 𝑠 (𝑃 𝑄)))) → ¬ 𝑡 (𝑃 𝑄))
5029, 36, 38, 40, 41, 43, 48, 49syl232anc 1399 . . . . . . 7 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → ¬ 𝑡 (𝑃 𝑄))
5127, 50pm2.21dd 195 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) ∧ (𝑡 𝑉) ≠ (𝑃 𝑄)) → 𝐷 (𝐸 𝑉))
52513expia 1121 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ((𝑡 𝑉) ≠ (𝑃 𝑄) → 𝐷 (𝐸 𝑉)))
5326, 52pm2.61dne 3012 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐸 𝑉))
54 cdleme27.c . . . . . 6 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
55 iftrue 4497 . . . . . 6 (𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐷)
5654, 55eqtrid 2777 . . . . 5 (𝑠 (𝑃 𝑄) → 𝐶 = 𝐷)
5756ad2antrr 726 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
58 cdleme27.y . . . . . . 7 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
59 iftrue 4497 . . . . . . 7 (𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐸)
6058, 59eqtrid 2777 . . . . . 6 (𝑡 (𝑃 𝑄) → 𝑌 = 𝐸)
6160oveq1d 7405 . . . . 5 (𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐸 𝑉))
6261ad2antlr 727 . . . 4 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
6353, 57, 623brtr4d 5142 . . 3 (((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
6463ex 412 . 2 ((𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
65 simpr11 1258 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
66 simpr12 1259 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
67 simpll 766 . . . . . 6 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑠 (𝑃 𝑄))
6866, 67jca 511 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑠 (𝑃 𝑄)))
69 simpr23 1263 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
70 simpr21 1261 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
71 simpr22 1262 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
72 simpr13 1260 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
73 simplr 768 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
74 simpr3l 1235 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
75 simpr3r 1236 . . . . 5 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
76 cdleme27.g . . . . . 6 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
77 eqid 2730 . . . . . 6 ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))) = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))
78 eqid 2730 . . . . . . 7 (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊))))) = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
7919, 20, 76, 77, 22, 78cdleme25cv 40359 . . . . . 6 𝐷 = (𝑢𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐺 ((𝑠 𝑡) 𝑊)))))
8012, 13, 14, 15, 16, 17, 18, 76, 77, 79cdleme26f 40364 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑠 (𝑃 𝑄)) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐷 (𝐺 𝑉))
8165, 68, 69, 70, 71, 72, 73, 74, 75, 80syl333anc 1404 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐷 (𝐺 𝑉))
8256ad2antrr 726 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐷)
83 iffalse 4500 . . . . . . 7 𝑡 (𝑃 𝑄) → if(𝑡 (𝑃 𝑄), 𝐸, 𝐺) = 𝐺)
8458, 83eqtrid 2777 . . . . . 6 𝑡 (𝑃 𝑄) → 𝑌 = 𝐺)
8584oveq1d 7405 . . . . 5 𝑡 (𝑃 𝑄) → (𝑌 𝑉) = (𝐺 𝑉))
8685ad2antlr 727 . . . 4 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
8781, 82, 863brtr4d 5142 . . 3 (((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
8887ex 412 . 2 ((𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
89 simpr11 1258 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
90 simpr12 1259 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
91 simplr 768 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑡 (𝑃 𝑄))
9290, 91jca 511 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝑄𝑡 (𝑃 𝑄)))
93 simpr13 1260 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
94 simpr21 1261 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
95 simpr22 1262 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
96 simpr23 1263 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
97 simpll 766 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
98 simpr3l 1235 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
99 simpr3r 1236 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
100 cdleme27.f . . . . . 6 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
101 eqid 2730 . . . . . 6 ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))) = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))
102 eqid 2730 . . . . . . 7 (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊))))) = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10319, 21, 100, 101, 23, 102cdleme25cv 40359 . . . . . 6 𝐸 = (𝑢𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ ¬ 𝑠 (𝑃 𝑄)) → 𝑢 = ((𝑃 𝑄) (𝐹 ((𝑡 𝑠) 𝑊)))))
10412, 13, 14, 15, 16, 17, 18, 100, 101, 103cdleme26f2 40366 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝑄𝑡 (𝑃 𝑄)) ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ (¬ 𝑠 (𝑃 𝑄) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐸 𝑉))
10589, 92, 93, 94, 95, 96, 97, 98, 99, 104syl333anc 1404 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐸 𝑉))
106 iffalse 4500 . . . . . 6 𝑠 (𝑃 𝑄) → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = 𝐹)
10754, 106eqtrid 2777 . . . . 5 𝑠 (𝑃 𝑄) → 𝐶 = 𝐹)
108107ad2antrr 726 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
10961ad2antlr 727 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐸 𝑉))
110105, 108, 1093brtr4d 5142 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
111110ex 412 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
112 simpr11 1258 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
113 simpr23 1263 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑡𝐴 ∧ ¬ 𝑡 𝑊))
114 simplr 768 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑡 (𝑃 𝑄))
115 simpll 766 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → ¬ 𝑠 (𝑃 𝑄))
116 simpr12 1259 . . . . . 6 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝑃𝑄)
117114, 115, 1163jca 1128 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄))
118 simpr21 1261 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
119 simpr22 1262 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
120 simpr13 1260 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝐴 ∧ ¬ 𝑠 𝑊))
121 simpr3l 1235 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑠𝑡𝑠 (𝑡 𝑉)))
122 simpr3r 1236 . . . . 5 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑉𝐴𝑉 𝑊))
12313, 14, 15, 16, 17, 18, 100, 76cdleme22g 40349 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊) ∧ (¬ 𝑡 (𝑃 𝑄) ∧ ¬ 𝑠 (𝑃 𝑄) ∧ 𝑃𝑄)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑠𝐴 ∧ ¬ 𝑠 𝑊) ∧ (𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐹 (𝐺 𝑉))
124112, 113, 117, 118, 119, 120, 121, 122, 123syl323anc 1402 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐹 (𝐺 𝑉))
125107ad2antrr 726 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 = 𝐹)
12685ad2antlr 727 . . . 4 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → (𝑌 𝑉) = (𝐺 𝑉))
127124, 125, 1263brtr4d 5142 . . 3 (((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊)))) → 𝐶 (𝑌 𝑉))
128127ex 412 . 2 ((¬ 𝑠 (𝑃 𝑄) ∧ ¬ 𝑡 (𝑃 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉)))
12964, 88, 111, 1284cases 1040 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ ¬ 𝑠 𝑊)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑡𝐴 ∧ ¬ 𝑡 𝑊)) ∧ ((𝑠𝑡𝑠 (𝑡 𝑉)) ∧ (𝑉𝐴𝑉 𝑊))) → 𝐶 (𝑌 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  ifcif 4491   class class class wbr 5110  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  Atomscatm 39263  HLchlt 39350  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-undef 8255  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989
This theorem is referenced by:  cdleme27N  40370  cdleme28a  40371
  Copyright terms: Public domain W3C validator