Proof of Theorem cdleme27a
Step | Hyp | Ref
| Expression |
1 | | simp211 1310 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp221 1313 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
3 | | simp222 1314 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
4 | | simp213 1312 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
5 | | simp223 1315 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
6 | | simp23r 1294 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
7 | | simp212 1311 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
8 | | simp1l 1196 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → 𝑠 ≤ (𝑃 ∨ 𝑄)) |
9 | | simp1r 1197 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → 𝑡 ≤ (𝑃 ∨ 𝑄)) |
10 | 7, 8, 9 | 3jca 1127 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝑃 ≠ 𝑄 ∧ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄))) |
11 | | simp3 1137 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) |
12 | | cdleme26.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) |
13 | | cdleme26.l |
. . . . . . . 8
⊢ ≤ =
(le‘𝐾) |
14 | | cdleme26.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
15 | | cdleme26.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
16 | | cdleme26.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
17 | | cdleme26.h |
. . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) |
18 | | cdleme27.u |
. . . . . . . 8
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
19 | | cdleme27.z |
. . . . . . . 8
⊢ 𝑍 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
20 | | cdleme27.n |
. . . . . . . 8
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) |
21 | | cdleme27.o |
. . . . . . . 8
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
22 | | cdleme27.d |
. . . . . . . 8
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
23 | | cdleme27.e |
. . . . . . . 8
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
24 | 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | cdleme26ee 38374 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) ∧ ((𝑃 ≠ 𝑄 ∧ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄))) → 𝐷 ≤ (𝐸 ∨ 𝑉)) |
25 | 1, 2, 3, 4, 5, 6, 10, 11, 24 | syl332anc 1400 |
. . . . . 6
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄)) → 𝐷 ≤ (𝐸 ∨ 𝑉)) |
26 | 25 | 3expia 1120 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → ((𝑡 ∨ 𝑉) = (𝑃 ∨ 𝑄) → 𝐷 ≤ (𝐸 ∨ 𝑉))) |
27 | | simp1r 1197 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑡 ≤ (𝑃 ∨ 𝑄)) |
28 | | simp11l 1283 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐾 ∈ HL) |
29 | 28 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝐾 ∈ HL) |
30 | | simp13l 1287 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑠 ∈ 𝐴) |
31 | 30 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑠 ∈ 𝐴) |
32 | | simp23l 1293 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑡 ∈ 𝐴) |
33 | 32 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑡 ∈ 𝐴) |
34 | | simp3ll 1243 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑠 ≠ 𝑡) |
35 | 34 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑠 ≠ 𝑡) |
36 | 31, 33, 35 | 3jca 1127 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ∧ 𝑠 ≠ 𝑡)) |
37 | | simp21l 1289 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑃 ∈ 𝐴) |
38 | 37 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑃 ∈ 𝐴) |
39 | | simp22l 1291 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑄 ∈ 𝐴) |
40 | 39 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
41 | | simp212 1311 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
42 | | simp3rl 1245 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 ∈ 𝐴) |
43 | 42 | 3ad2ant2 1133 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑉 ∈ 𝐴) |
44 | | simp3 1137 |
. . . . . . . . 9
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) |
45 | | simp3lr 1244 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑠 ≤ (𝑡 ∨ 𝑉)) |
46 | 45 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑠 ≤ (𝑡 ∨ 𝑉)) |
47 | | simp1l 1196 |
. . . . . . . . 9
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝑠 ≤ (𝑃 ∨ 𝑄)) |
48 | 44, 46, 47 | 3jca 1127 |
. . . . . . . 8
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → ((𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑠 ≤ (𝑡 ∨ 𝑉) ∧ 𝑠 ≤ (𝑃 ∨ 𝑄))) |
49 | 13, 14, 15, 16, 17 | cdleme22b 38355 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑠 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ∧ 𝑠 ≠ 𝑡)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑉 ∈ 𝐴 ∧ ((𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) ∧ 𝑠 ≤ (𝑡 ∨ 𝑉) ∧ 𝑠 ≤ (𝑃 ∨ 𝑄)))) → ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) |
50 | 29, 36, 38, 40, 41, 43, 48, 49 | syl232anc 1396 |
. . . . . . 7
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) |
51 | 27, 50 | pm2.21dd 194 |
. . . . . 6
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ (𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄)) → 𝐷 ≤ (𝐸 ∨ 𝑉)) |
52 | 51 | 3expia 1120 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → ((𝑡 ∨ 𝑉) ≠ (𝑃 ∨ 𝑄) → 𝐷 ≤ (𝐸 ∨ 𝑉))) |
53 | 26, 52 | pm2.61dne 3031 |
. . . 4
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐷 ≤ (𝐸 ∨ 𝑉)) |
54 | | cdleme27.c |
. . . . . 6
⊢ 𝐶 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) |
55 | | iftrue 4465 |
. . . . . 6
⊢ (𝑠 ≤ (𝑃 ∨ 𝑄) → if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) = 𝐷) |
56 | 54, 55 | eqtrid 2790 |
. . . . 5
⊢ (𝑠 ≤ (𝑃 ∨ 𝑄) → 𝐶 = 𝐷) |
57 | 56 | ad2antrr 723 |
. . . 4
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 = 𝐷) |
58 | | cdleme27.y |
. . . . . . 7
⊢ 𝑌 = if(𝑡 ≤ (𝑃 ∨ 𝑄), 𝐸, 𝐺) |
59 | | iftrue 4465 |
. . . . . . 7
⊢ (𝑡 ≤ (𝑃 ∨ 𝑄) → if(𝑡 ≤ (𝑃 ∨ 𝑄), 𝐸, 𝐺) = 𝐸) |
60 | 58, 59 | eqtrid 2790 |
. . . . . 6
⊢ (𝑡 ≤ (𝑃 ∨ 𝑄) → 𝑌 = 𝐸) |
61 | 60 | oveq1d 7290 |
. . . . 5
⊢ (𝑡 ≤ (𝑃 ∨ 𝑄) → (𝑌 ∨ 𝑉) = (𝐸 ∨ 𝑉)) |
62 | 61 | ad2antlr 724 |
. . . 4
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑌 ∨ 𝑉) = (𝐸 ∨ 𝑉)) |
63 | 53, 57, 62 | 3brtr4d 5106 |
. . 3
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
64 | 63 | ex 413 |
. 2
⊢ ((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉))) |
65 | | simpr11 1256 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
66 | | simpr12 1257 |
. . . . . 6
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝑃 ≠ 𝑄) |
67 | | simpll 764 |
. . . . . 6
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝑠 ≤ (𝑃 ∨ 𝑄)) |
68 | 66, 67 | jca 512 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑃 ≠ 𝑄 ∧ 𝑠 ≤ (𝑃 ∨ 𝑄))) |
69 | | simpr23 1261 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
70 | | simpr21 1259 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
71 | | simpr22 1260 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
72 | | simpr13 1258 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
73 | | simplr 766 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) |
74 | | simpr3l 1233 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉))) |
75 | | simpr3r 1234 |
. . . . 5
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
76 | | cdleme27.g |
. . . . . 6
⊢ 𝐺 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
77 | | eqid 2738 |
. . . . . 6
⊢ ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) |
78 | | eqid 2738 |
. . . . . . 7
⊢
(℩𝑢
∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))) = (℩𝑢 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))) |
79 | 19, 20, 76, 77, 22, 78 | cdleme25cv 38372 |
. . . . . 6
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝐺 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))))) |
80 | 12, 13, 14, 15, 16, 17, 18, 76, 77, 79 | cdleme26f 38377 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑠 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ (¬ 𝑡 ≤ (𝑃 ∨ 𝑄) ∧ (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐷 ≤ (𝐺 ∨ 𝑉)) |
81 | 65, 68, 69, 70, 71, 72, 73, 74, 75, 80 | syl333anc 1401 |
. . . 4
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐷 ≤ (𝐺 ∨ 𝑉)) |
82 | 56 | ad2antrr 723 |
. . . 4
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 = 𝐷) |
83 | | iffalse 4468 |
. . . . . . 7
⊢ (¬
𝑡 ≤ (𝑃 ∨ 𝑄) → if(𝑡 ≤ (𝑃 ∨ 𝑄), 𝐸, 𝐺) = 𝐺) |
84 | 58, 83 | eqtrid 2790 |
. . . . . 6
⊢ (¬
𝑡 ≤ (𝑃 ∨ 𝑄) → 𝑌 = 𝐺) |
85 | 84 | oveq1d 7290 |
. . . . 5
⊢ (¬
𝑡 ≤ (𝑃 ∨ 𝑄) → (𝑌 ∨ 𝑉) = (𝐺 ∨ 𝑉)) |
86 | 85 | ad2antlr 724 |
. . . 4
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑌 ∨ 𝑉) = (𝐺 ∨ 𝑉)) |
87 | 81, 82, 86 | 3brtr4d 5106 |
. . 3
⊢ (((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
88 | 87 | ex 413 |
. 2
⊢ ((𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉))) |
89 | | simpr11 1256 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
90 | | simpr12 1257 |
. . . . . 6
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝑃 ≠ 𝑄) |
91 | | simplr 766 |
. . . . . 6
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝑡 ≤ (𝑃 ∨ 𝑄)) |
92 | 90, 91 | jca 512 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑃 ≠ 𝑄 ∧ 𝑡 ≤ (𝑃 ∨ 𝑄))) |
93 | | simpr13 1258 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
94 | | simpr21 1259 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
95 | | simpr22 1260 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
96 | | simpr23 1261 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
97 | | simpll 764 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) |
98 | | simpr3l 1233 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉))) |
99 | | simpr3r 1234 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
100 | | cdleme27.f |
. . . . . 6
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
101 | | eqid 2738 |
. . . . . 6
⊢ ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑡 ∨ 𝑠) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑡 ∨ 𝑠) ∧ 𝑊))) |
102 | | eqid 2738 |
. . . . . . 7
⊢
(℩𝑢
∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑡 ∨ 𝑠) ∧ 𝑊))))) = (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑡 ∨ 𝑠) ∧ 𝑊))))) |
103 | 19, 21, 100, 101, 23, 102 | cdleme25cv 38372 |
. . . . . 6
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑡 ∨ 𝑠) ∧ 𝑊))))) |
104 | 12, 13, 14, 15, 16, 17, 18, 100, 101, 103 | cdleme26f2 38379 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ≠ 𝑄 ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐹 ≤ (𝐸 ∨ 𝑉)) |
105 | 89, 92, 93, 94, 95, 96, 97, 98, 99, 104 | syl333anc 1401 |
. . . 4
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐹 ≤ (𝐸 ∨ 𝑉)) |
106 | | iffalse 4468 |
. . . . . 6
⊢ (¬
𝑠 ≤ (𝑃 ∨ 𝑄) → if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) = 𝐹) |
107 | 54, 106 | eqtrid 2790 |
. . . . 5
⊢ (¬
𝑠 ≤ (𝑃 ∨ 𝑄) → 𝐶 = 𝐹) |
108 | 107 | ad2antrr 723 |
. . . 4
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 = 𝐹) |
109 | 61 | ad2antlr 724 |
. . . 4
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑌 ∨ 𝑉) = (𝐸 ∨ 𝑉)) |
110 | 105, 108,
109 | 3brtr4d 5106 |
. . 3
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
111 | 110 | ex 413 |
. 2
⊢ ((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑡 ≤ (𝑃 ∨ 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉))) |
112 | | simpr11 1256 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
113 | | simpr23 1261 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
114 | | simplr 766 |
. . . . . 6
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) |
115 | | simpll 764 |
. . . . . 6
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → ¬ 𝑠 ≤ (𝑃 ∨ 𝑄)) |
116 | | simpr12 1257 |
. . . . . 6
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝑃 ≠ 𝑄) |
117 | 114, 115,
116 | 3jca 1127 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (¬ 𝑡 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) |
118 | | simpr21 1259 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
119 | | simpr22 1260 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
120 | | simpr13 1258 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
121 | | simpr3l 1233 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉))) |
122 | | simpr3r 1234 |
. . . . 5
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
123 | 13, 14, 15, 16, 17, 18, 100, 76 | cdleme22g 38362 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ (¬ 𝑡 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑠 ≤ (𝑃 ∨ 𝑄) ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐹 ≤ (𝐺 ∨ 𝑉)) |
124 | 112, 113,
117, 118, 119, 120, 121, 122, 123 | syl323anc 1399 |
. . . 4
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐹 ≤ (𝐺 ∨ 𝑉)) |
125 | 107 | ad2antrr 723 |
. . . 4
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 = 𝐹) |
126 | 85 | ad2antlr 724 |
. . . 4
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → (𝑌 ∨ 𝑉) = (𝐺 ∨ 𝑉)) |
127 | 124, 125,
126 | 3brtr4d 5106 |
. . 3
⊢ (((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) ∧ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
128 | 127 | ex 413 |
. 2
⊢ ((¬
𝑠 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉))) |
129 | 64, 88, 111, 128 | 4cases 1038 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |