Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnoutside Structured version   Visualization version   GIF version

Theorem btwnoutside 34427
Description: A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
btwnoutside ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩)))

Proof of Theorem btwnoutside
StepHypRef Expression
1 df-3an 1088 . . . . . 6 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩))
2 simpr11 1256 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐴𝑃)
3 simpr12 1257 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐵𝑃)
4 simpr13 1258 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐶𝑃)
5 simp1 1135 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp3r 1201 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
7 simp2l 1198 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
8 simp3l 1200 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
9 simpr2 1194 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
105, 6, 7, 8, 9btwncomand 34317 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐶, 𝐴⟩)
11 simp2r 1199 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
12 simpr3 1195 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
135, 6, 11, 8, 12btwncomand 34317 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐶, 𝐵⟩)
14 btwnconn2 34404 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
15143com23 1125 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
1615adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
174, 10, 13, 16mp3and 1463 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
182, 3, 173jca 1127 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
191, 18sylan2br 595 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
2019expr 457 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
21 simp3 1137 . . . . 5 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
22 df-3an 1088 . . . . . . . 8 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
23 simpr11 1256 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴𝑃)
24 simpr3 1195 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
255, 7, 6, 11, 24btwncomand 34317 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝐵, 𝑃⟩)
26 simpr2 1194 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
27 btwnouttr2 34324 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
285, 11, 7, 6, 8, 27syl122anc 1378 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
2928adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
3023, 25, 26, 29mp3and 1463 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3122, 30sylan2br 595 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3231expr 457 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
33 df-3an 1088 . . . . . . . 8 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
34 simpr3 1195 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
355, 11, 6, 7, 34btwncomand 34317 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝐵 Btwn ⟨𝐴, 𝑃⟩)
36 simpr2 1194 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
375, 7, 11, 6, 8, 35, 36btwnexch3and 34323 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3833, 37sylan2br 595 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3938expr 457 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4032, 39jaod 856 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4121, 40syl5 34 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4220, 41impbid 211 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
43 broutsideof2 34424 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
445, 6, 7, 11, 43syl13anc 1371 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
4544adantr 481 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
4642, 45bitr4d 281 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩))
4746ex 413 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2106  wne 2943  cop 4567   class class class wbr 5074  cfv 6433  cn 11973  𝔼cee 27256   Btwn cbtwn 27257  OutsideOfcoutsideof 34421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-ee 27259  df-btwn 27260  df-cgr 27261  df-ofs 34285  df-colinear 34341  df-ifs 34342  df-cgr3 34343  df-fs 34344  df-outsideof 34422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator