Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnoutside Structured version   Visualization version   GIF version

Theorem btwnoutside 35402
Description: A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
btwnoutside ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) β†’ (𝑃 Btwn ⟨𝐡, 𝐢⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐡⟩)))

Proof of Theorem btwnoutside
StepHypRef Expression
1 df-3an 1088 . . . . . 6 (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩) ↔ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
2 simpr11 1256 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ 𝐴 β‰  𝑃)
3 simpr12 1257 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ 𝐡 β‰  𝑃)
4 simpr13 1258 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ 𝐢 β‰  𝑃)
5 simp1 1135 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ 𝑁 ∈ β„•)
6 simp3r 1201 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ 𝑃 ∈ (π”Όβ€˜π‘))
7 simp2l 1198 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ 𝐴 ∈ (π”Όβ€˜π‘))
8 simp3l 1200 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ 𝐢 ∈ (π”Όβ€˜π‘))
9 simpr2 1194 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ 𝑃 Btwn ⟨𝐴, 𝐢⟩)
105, 6, 7, 8, 9btwncomand 35292 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ 𝑃 Btwn ⟨𝐢, 𝐴⟩)
11 simp2r 1199 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ 𝐡 ∈ (π”Όβ€˜π‘))
12 simpr3 1195 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩)
135, 6, 11, 8, 12btwncomand 35292 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ 𝑃 Btwn ⟨𝐢, 𝐡⟩)
14 btwnconn2 35379 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘)) ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ ((𝐢 β‰  𝑃 ∧ 𝑃 Btwn ⟨𝐢, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐢, 𝐡⟩) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)))
15143com23 1125 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ ((𝐢 β‰  𝑃 ∧ 𝑃 Btwn ⟨𝐢, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐢, 𝐡⟩) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)))
1615adantr 480 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ ((𝐢 β‰  𝑃 ∧ 𝑃 Btwn ⟨𝐢, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐢, 𝐡⟩) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)))
174, 10, 13, 16mp3and 1463 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))
182, 3, 173jca 1127 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ (𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)))
191, 18sylan2br 594 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) ∧ 𝑃 Btwn ⟨𝐡, 𝐢⟩)) β†’ (𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)))
2019expr 456 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ (𝑃 Btwn ⟨𝐡, 𝐢⟩ β†’ (𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))))
21 simp3 1137 . . . . 5 ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))
22 df-3an 1088 . . . . . . . 8 (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩) ↔ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩))
23 simpr11 1256 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝐴 β‰  𝑃)
24 simpr3 1195 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)
255, 7, 6, 11, 24btwncomand 35292 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝐴 Btwn ⟨𝐡, π‘ƒβŸ©)
26 simpr2 1194 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝑃 Btwn ⟨𝐴, 𝐢⟩)
27 btwnouttr2 35299 . . . . . . . . . . 11 ((𝑁 ∈ β„• ∧ (𝐡 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘)) ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐢 ∈ (π”Όβ€˜π‘))) β†’ ((𝐴 β‰  𝑃 ∧ 𝐴 Btwn ⟨𝐡, π‘ƒβŸ© ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
285, 11, 7, 6, 8, 27syl122anc 1378 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ ((𝐴 β‰  𝑃 ∧ 𝐴 Btwn ⟨𝐡, π‘ƒβŸ© ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
2928adantr 480 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)) β†’ ((𝐴 β‰  𝑃 ∧ 𝐴 Btwn ⟨𝐡, π‘ƒβŸ© ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
3023, 25, 26, 29mp3and 1463 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩)
3122, 30sylan2br 594 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) ∧ 𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩)) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩)
3231expr 456 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
33 df-3an 1088 . . . . . . . 8 (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩) ↔ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) ∧ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))
34 simpr3 1195 . . . . . . . . . 10 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)) β†’ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)
355, 11, 6, 7, 34btwncomand 35292 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)) β†’ 𝐡 Btwn ⟨𝐴, π‘ƒβŸ©)
36 simpr2 1194 . . . . . . . . 9 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)) β†’ 𝑃 Btwn ⟨𝐴, 𝐢⟩)
375, 7, 11, 6, 8, 35, 36btwnexch3and 35298 . . . . . . . 8 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩ ∧ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩)
3833, 37sylan2br 594 . . . . . . 7 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) ∧ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩)
3938expr 456 . . . . . 6 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ (𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩ β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
4032, 39jaod 856 . . . . 5 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ ((𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
4121, 40syl5 34 . . . 4 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩)) β†’ 𝑃 Btwn ⟨𝐡, 𝐢⟩))
4220, 41impbid 211 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ (𝑃 Btwn ⟨𝐡, 𝐢⟩ ↔ (𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))))
43 broutsideof2 35399 . . . . 5 ((𝑁 ∈ β„• ∧ (𝑃 ∈ (π”Όβ€˜π‘) ∧ 𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ (𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))))
445, 6, 7, 11, 43syl13anc 1371 . . . 4 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ (𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))))
4544adantr 480 . . 3 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ (𝑃OutsideOf⟨𝐴, 𝐡⟩ ↔ (𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ (𝐴 Btwn βŸ¨π‘ƒ, 𝐡⟩ ∨ 𝐡 Btwn βŸ¨π‘ƒ, 𝐴⟩))))
4642, 45bitr4d 282 . 2 (((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) ∧ ((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩)) β†’ (𝑃 Btwn ⟨𝐡, 𝐢⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐡⟩))
4746ex 412 1 ((𝑁 ∈ β„• ∧ (𝐴 ∈ (π”Όβ€˜π‘) ∧ 𝐡 ∈ (π”Όβ€˜π‘)) ∧ (𝐢 ∈ (π”Όβ€˜π‘) ∧ 𝑃 ∈ (π”Όβ€˜π‘))) β†’ (((𝐴 β‰  𝑃 ∧ 𝐡 β‰  𝑃 ∧ 𝐢 β‰  𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐢⟩) β†’ (𝑃 Btwn ⟨𝐡, 𝐢⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐡⟩)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∨ wo 844   ∧ w3a 1086   ∈ wcel 2105   β‰  wne 2939  βŸ¨cop 4634   class class class wbr 5148  β€˜cfv 6543  β„•cn 12217  π”Όcee 28414   Btwn cbtwn 28415  OutsideOfcoutsideof 35396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9640  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-pre-sup 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-sup 9441  df-oi 9509  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-n0 12478  df-z 12564  df-uz 12828  df-rp 12980  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-seq 13972  df-exp 14033  df-hash 14296  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-clim 15437  df-sum 15638  df-ee 28417  df-btwn 28418  df-cgr 28419  df-ofs 35260  df-colinear 35316  df-ifs 35317  df-cgr3 35318  df-fs 35319  df-outsideof 35397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator