Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnoutside Structured version   Visualization version   GIF version

Theorem btwnoutside 36089
Description: A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
btwnoutside ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩)))

Proof of Theorem btwnoutside
StepHypRef Expression
1 df-3an 1089 . . . . . 6 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩))
2 simpr11 1257 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐴𝑃)
3 simpr12 1258 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐵𝑃)
4 simpr13 1259 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐶𝑃)
5 simp1 1136 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp3r 1202 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
7 simp2l 1199 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
8 simp3l 1201 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
9 simpr2 1195 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
105, 6, 7, 8, 9btwncomand 35979 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐶, 𝐴⟩)
11 simp2r 1200 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
12 simpr3 1196 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
135, 6, 11, 8, 12btwncomand 35979 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐶, 𝐵⟩)
14 btwnconn2 36066 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
15143com23 1126 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
1615adantr 480 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
174, 10, 13, 16mp3and 1464 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
182, 3, 173jca 1128 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
191, 18sylan2br 594 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
2019expr 456 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
21 simp3 1138 . . . . 5 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
22 df-3an 1089 . . . . . . . 8 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
23 simpr11 1257 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴𝑃)
24 simpr3 1196 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
255, 7, 6, 11, 24btwncomand 35979 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝐵, 𝑃⟩)
26 simpr2 1195 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
27 btwnouttr2 35986 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
285, 11, 7, 6, 8, 27syl122anc 1379 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
2928adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
3023, 25, 26, 29mp3and 1464 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3122, 30sylan2br 594 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3231expr 456 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
33 df-3an 1089 . . . . . . . 8 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
34 simpr3 1196 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
355, 11, 6, 7, 34btwncomand 35979 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝐵 Btwn ⟨𝐴, 𝑃⟩)
36 simpr2 1195 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
375, 7, 11, 6, 8, 35, 36btwnexch3and 35985 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3833, 37sylan2br 594 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3938expr 456 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4032, 39jaod 858 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4121, 40syl5 34 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4220, 41impbid 212 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
43 broutsideof2 36086 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
445, 6, 7, 11, 43syl13anc 1372 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
4544adantr 480 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
4642, 45bitr4d 282 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩))
4746ex 412 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wne 2946  cop 4654   class class class wbr 5166  cfv 6573  cn 12293  𝔼cee 28921   Btwn cbtwn 28922  OutsideOfcoutsideof 36083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-ee 28924  df-btwn 28925  df-cgr 28926  df-ofs 35947  df-colinear 36003  df-ifs 36004  df-cgr3 36005  df-fs 36006  df-outsideof 36084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator