MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsass Structured version   Visualization version   GIF version

Theorem mulsass 28074
Description: Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. Much like the case for additive groups, this theorem together with mulscom 28047, addsdi 28063, mulsgt0 28052, and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025.)
Assertion
Ref Expression
mulsass ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶)))

Proof of Theorem mulsass
Dummy variables 𝑎 𝑥 𝑥𝑂 𝑥𝐿 𝑥𝑅 𝑦 𝑦𝑂 𝑦𝐿 𝑦𝑅 𝑧 𝑧𝑂 𝑧𝐿 𝑧𝑅 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7356 . . . 4 (𝑥 = 𝑥𝑂 → (𝑥 ·s 𝑦) = (𝑥𝑂 ·s 𝑦))
21oveq1d 7364 . . 3 (𝑥 = 𝑥𝑂 → ((𝑥 ·s 𝑦) ·s 𝑧) = ((𝑥𝑂 ·s 𝑦) ·s 𝑧))
3 oveq1 7356 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 ·s (𝑦 ·s 𝑧)) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)))
42, 3eqeq12d 2745 . 2 (𝑥 = 𝑥𝑂 → (((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)) ↔ ((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧))))
5 oveq2 7357 . . . 4 (𝑦 = 𝑦𝑂 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑂 ·s 𝑦𝑂))
65oveq1d 7364 . . 3 (𝑦 = 𝑦𝑂 → ((𝑥𝑂 ·s 𝑦) ·s 𝑧) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧))
7 oveq1 7356 . . . 4 (𝑦 = 𝑦𝑂 → (𝑦 ·s 𝑧) = (𝑦𝑂 ·s 𝑧))
87oveq2d 7365 . . 3 (𝑦 = 𝑦𝑂 → (𝑥𝑂 ·s (𝑦 ·s 𝑧)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)))
96, 8eqeq12d 2745 . 2 (𝑦 = 𝑦𝑂 → (((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧))))
10 oveq2 7357 . . 3 (𝑧 = 𝑧𝑂 → ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂))
11 oveq2 7357 . . . 4 (𝑧 = 𝑧𝑂 → (𝑦𝑂 ·s 𝑧) = (𝑦𝑂 ·s 𝑧𝑂))
1211oveq2d 7365 . . 3 (𝑧 = 𝑧𝑂 → (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
1310, 12eqeq12d 2745 . 2 (𝑧 = 𝑧𝑂 → (((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))))
14 oveq1 7356 . . . 4 (𝑥 = 𝑥𝑂 → (𝑥 ·s 𝑦𝑂) = (𝑥𝑂 ·s 𝑦𝑂))
1514oveq1d 7364 . . 3 (𝑥 = 𝑥𝑂 → ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂))
16 oveq1 7356 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
1715, 16eqeq12d 2745 . 2 (𝑥 = 𝑥𝑂 → (((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))))
18 oveq2 7357 . . . 4 (𝑦 = 𝑦𝑂 → (𝑥 ·s 𝑦) = (𝑥 ·s 𝑦𝑂))
1918oveq1d 7364 . . 3 (𝑦 = 𝑦𝑂 → ((𝑥 ·s 𝑦) ·s 𝑧𝑂) = ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂))
20 oveq1 7356 . . . 4 (𝑦 = 𝑦𝑂 → (𝑦 ·s 𝑧𝑂) = (𝑦𝑂 ·s 𝑧𝑂))
2120oveq2d 7365 . . 3 (𝑦 = 𝑦𝑂 → (𝑥 ·s (𝑦 ·s 𝑧𝑂)) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)))
2219, 21eqeq12d 2745 . 2 (𝑦 = 𝑦𝑂 → (((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)) ↔ ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂))))
235oveq1d 7364 . . 3 (𝑦 = 𝑦𝑂 → ((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂))
2420oveq2d 7365 . . 3 (𝑦 = 𝑦𝑂 → (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
2523, 24eqeq12d 2745 . 2 (𝑦 = 𝑦𝑂 → (((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))))
26 oveq2 7357 . . 3 (𝑧 = 𝑧𝑂 → ((𝑥 ·s 𝑦𝑂) ·s 𝑧) = ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂))
2711oveq2d 7365 . . 3 (𝑧 = 𝑧𝑂 → (𝑥 ·s (𝑦𝑂 ·s 𝑧)) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)))
2826, 27eqeq12d 2745 . 2 (𝑧 = 𝑧𝑂 → (((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧)) ↔ ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂))))
29 oveq1 7356 . . . 4 (𝑥 = 𝐴 → (𝑥 ·s 𝑦) = (𝐴 ·s 𝑦))
3029oveq1d 7364 . . 3 (𝑥 = 𝐴 → ((𝑥 ·s 𝑦) ·s 𝑧) = ((𝐴 ·s 𝑦) ·s 𝑧))
31 oveq1 7356 . . 3 (𝑥 = 𝐴 → (𝑥 ·s (𝑦 ·s 𝑧)) = (𝐴 ·s (𝑦 ·s 𝑧)))
3230, 31eqeq12d 2745 . 2 (𝑥 = 𝐴 → (((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)) ↔ ((𝐴 ·s 𝑦) ·s 𝑧) = (𝐴 ·s (𝑦 ·s 𝑧))))
33 oveq2 7357 . . . 4 (𝑦 = 𝐵 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝐵))
3433oveq1d 7364 . . 3 (𝑦 = 𝐵 → ((𝐴 ·s 𝑦) ·s 𝑧) = ((𝐴 ·s 𝐵) ·s 𝑧))
35 oveq1 7356 . . . 4 (𝑦 = 𝐵 → (𝑦 ·s 𝑧) = (𝐵 ·s 𝑧))
3635oveq2d 7365 . . 3 (𝑦 = 𝐵 → (𝐴 ·s (𝑦 ·s 𝑧)) = (𝐴 ·s (𝐵 ·s 𝑧)))
3734, 36eqeq12d 2745 . 2 (𝑦 = 𝐵 → (((𝐴 ·s 𝑦) ·s 𝑧) = (𝐴 ·s (𝑦 ·s 𝑧)) ↔ ((𝐴 ·s 𝐵) ·s 𝑧) = (𝐴 ·s (𝐵 ·s 𝑧))))
38 oveq2 7357 . . 3 (𝑧 = 𝐶 → ((𝐴 ·s 𝐵) ·s 𝑧) = ((𝐴 ·s 𝐵) ·s 𝐶))
39 oveq2 7357 . . . 4 (𝑧 = 𝐶 → (𝐵 ·s 𝑧) = (𝐵 ·s 𝐶))
4039oveq2d 7365 . . 3 (𝑧 = 𝐶 → (𝐴 ·s (𝐵 ·s 𝑧)) = (𝐴 ·s (𝐵 ·s 𝐶)))
4138, 40eqeq12d 2745 . 2 (𝑧 = 𝐶 → (((𝐴 ·s 𝐵) ·s 𝑧) = (𝐴 ·s (𝐵 ·s 𝑧)) ↔ ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))))
42 simpl1 1192 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → 𝑥 No )
43 simpl2 1193 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → 𝑦 No )
44 simpl3 1194 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → 𝑧 No )
45 ssun1 4129 . . . . . . . . . 10 ( L ‘𝑥) ⊆ (( L ‘𝑥) ∪ ( R ‘𝑥))
46 ssun1 4129 . . . . . . . . . 10 ( L ‘𝑦) ⊆ (( L ‘𝑦) ∪ ( R ‘𝑦))
47 ssun1 4129 . . . . . . . . . 10 ( L ‘𝑧) ⊆ (( L ‘𝑧) ∪ ( R ‘𝑧))
48 simpr11 1258 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
49 simpr12 1259 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)))
50 simpr13 1260 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂)))
51 simpr22 1262 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)))
52 simpr21 1261 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)))
53 simpr23 1263 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧)))
54 simpr3 1197 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))
5542, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))))
5655abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})
57 ssun2 4130 . . . . . . . . . 10 ( R ‘𝑥) ⊆ (( L ‘𝑥) ∪ ( R ‘𝑥))
58 ssun2 4130 . . . . . . . . . 10 ( R ‘𝑦) ⊆ (( L ‘𝑦) ∪ ( R ‘𝑦))
5942, 43, 44, 57, 58, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
6059abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})
6156, 60uneq12d 4120 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}))
62 ssun2 4130 . . . . . . . . . 10 ( R ‘𝑧) ⊆ (( L ‘𝑧) ∪ ( R ‘𝑧))
6342, 43, 44, 45, 58, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
6463abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})
6542, 43, 44, 57, 46, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))))
6665abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})
6764, 66uneq12d 4120 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))}))
6861, 67uneq12d 4120 . . . . . 6 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})))
69 un4 4126 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))}))
70 uncom 4109 . . . . . . . 8 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))}) = ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})
7170uneq2i 4116 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}))
7269, 71eqtri 2752 . . . . . 6 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}))
7368, 72eqtrdi 2780 . . . . 5 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})))
7442, 43, 44, 45, 46, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))))
7574abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})
7642, 43, 44, 57, 58, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
7776abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})
7875, 77uneq12d 4120 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))
7942, 43, 44, 45, 58, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
8079abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})
8142, 43, 44, 57, 46, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28073 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))))
8281abbidv 2795 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})
8380, 82uneq12d 4120 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))}))
8478, 83uneq12d 4120 . . . . . 6 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})))
85 un4 4126 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))}))
86 uncom 4109 . . . . . . . 8 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))}) = ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})
8786uneq2i 4116 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))
8885, 87eqtri 2752 . . . . . 6 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))
8984, 88eqtrdi 2780 . . . . 5 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})))
9073, 89oveq12d 7367 . . . 4 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))}))) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))))
9142, 43, 44mulsasslem1 28071 . . . 4 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ((𝑥 ·s 𝑦) ·s 𝑧) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))}))))
9242, 43, 44mulsasslem2 28072 . . . 4 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (𝑥 ·s (𝑦 ·s 𝑧)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))))
9390, 91, 923eqtr4d 2774 . . 3 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)))
9493ex 412 . 2 ((𝑥 No 𝑦 No 𝑧 No ) → (((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂))) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧))))
954, 9, 13, 17, 22, 25, 28, 32, 37, 41, 94no3inds 27870 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  cun 3901  cfv 6482  (class class class)co 7349   No csur 27549   |s cscut 27693   L cleft 27755   R cright 27756   +s cadds 27871   -s csubs 27931   ·s cmuls 28014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-1o 8388  df-2o 8389  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec 27850  df-norec2 27861  df-adds 27872  df-negs 27932  df-subs 27933  df-muls 28015
This theorem is referenced by:  mulsassd  28075  zsoring  28301
  Copyright terms: Public domain W3C validator