MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsass Structured version   Visualization version   GIF version

Theorem mulsass 28207
Description: Associative law for surreal multiplication. Part of theorem 7 of [Conway] p. 19. Much like the case for additive groups, this theorem together with mulscom 28180, addsdi 28196, mulsgt0 28185, and the addition theorems would make the surreals into an ordered ring except that they are a proper class. (Contributed by Scott Fenton, 10-Mar-2025.)
Assertion
Ref Expression
mulsass ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶)))

Proof of Theorem mulsass
Dummy variables 𝑎 𝑥 𝑥𝑂 𝑥𝐿 𝑥𝑅 𝑦 𝑦𝑂 𝑦𝐿 𝑦𝑅 𝑧 𝑧𝑂 𝑧𝐿 𝑧𝑅 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . 4 (𝑥 = 𝑥𝑂 → (𝑥 ·s 𝑦) = (𝑥𝑂 ·s 𝑦))
21oveq1d 7446 . . 3 (𝑥 = 𝑥𝑂 → ((𝑥 ·s 𝑦) ·s 𝑧) = ((𝑥𝑂 ·s 𝑦) ·s 𝑧))
3 oveq1 7438 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 ·s (𝑦 ·s 𝑧)) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)))
42, 3eqeq12d 2751 . 2 (𝑥 = 𝑥𝑂 → (((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)) ↔ ((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧))))
5 oveq2 7439 . . . 4 (𝑦 = 𝑦𝑂 → (𝑥𝑂 ·s 𝑦) = (𝑥𝑂 ·s 𝑦𝑂))
65oveq1d 7446 . . 3 (𝑦 = 𝑦𝑂 → ((𝑥𝑂 ·s 𝑦) ·s 𝑧) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧))
7 oveq1 7438 . . . 4 (𝑦 = 𝑦𝑂 → (𝑦 ·s 𝑧) = (𝑦𝑂 ·s 𝑧))
87oveq2d 7447 . . 3 (𝑦 = 𝑦𝑂 → (𝑥𝑂 ·s (𝑦 ·s 𝑧)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)))
96, 8eqeq12d 2751 . 2 (𝑦 = 𝑦𝑂 → (((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧))))
10 oveq2 7439 . . 3 (𝑧 = 𝑧𝑂 → ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂))
11 oveq2 7439 . . . 4 (𝑧 = 𝑧𝑂 → (𝑦𝑂 ·s 𝑧) = (𝑦𝑂 ·s 𝑧𝑂))
1211oveq2d 7447 . . 3 (𝑧 = 𝑧𝑂 → (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
1310, 12eqeq12d 2751 . 2 (𝑧 = 𝑧𝑂 → (((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))))
14 oveq1 7438 . . . 4 (𝑥 = 𝑥𝑂 → (𝑥 ·s 𝑦𝑂) = (𝑥𝑂 ·s 𝑦𝑂))
1514oveq1d 7446 . . 3 (𝑥 = 𝑥𝑂 → ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂))
16 oveq1 7438 . . 3 (𝑥 = 𝑥𝑂 → (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
1715, 16eqeq12d 2751 . 2 (𝑥 = 𝑥𝑂 → (((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))))
18 oveq2 7439 . . . 4 (𝑦 = 𝑦𝑂 → (𝑥 ·s 𝑦) = (𝑥 ·s 𝑦𝑂))
1918oveq1d 7446 . . 3 (𝑦 = 𝑦𝑂 → ((𝑥 ·s 𝑦) ·s 𝑧𝑂) = ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂))
20 oveq1 7438 . . . 4 (𝑦 = 𝑦𝑂 → (𝑦 ·s 𝑧𝑂) = (𝑦𝑂 ·s 𝑧𝑂))
2120oveq2d 7447 . . 3 (𝑦 = 𝑦𝑂 → (𝑥 ·s (𝑦 ·s 𝑧𝑂)) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)))
2219, 21eqeq12d 2751 . 2 (𝑦 = 𝑦𝑂 → (((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)) ↔ ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂))))
235oveq1d 7446 . . 3 (𝑦 = 𝑦𝑂 → ((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂))
2420oveq2d 7447 . . 3 (𝑦 = 𝑦𝑂 → (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂)) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
2523, 24eqeq12d 2751 . 2 (𝑦 = 𝑦𝑂 → (((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂)) ↔ ((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂))))
26 oveq2 7439 . . 3 (𝑧 = 𝑧𝑂 → ((𝑥 ·s 𝑦𝑂) ·s 𝑧) = ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂))
2711oveq2d 7447 . . 3 (𝑧 = 𝑧𝑂 → (𝑥 ·s (𝑦𝑂 ·s 𝑧)) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)))
2826, 27eqeq12d 2751 . 2 (𝑧 = 𝑧𝑂 → (((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧)) ↔ ((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂))))
29 oveq1 7438 . . . 4 (𝑥 = 𝐴 → (𝑥 ·s 𝑦) = (𝐴 ·s 𝑦))
3029oveq1d 7446 . . 3 (𝑥 = 𝐴 → ((𝑥 ·s 𝑦) ·s 𝑧) = ((𝐴 ·s 𝑦) ·s 𝑧))
31 oveq1 7438 . . 3 (𝑥 = 𝐴 → (𝑥 ·s (𝑦 ·s 𝑧)) = (𝐴 ·s (𝑦 ·s 𝑧)))
3230, 31eqeq12d 2751 . 2 (𝑥 = 𝐴 → (((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)) ↔ ((𝐴 ·s 𝑦) ·s 𝑧) = (𝐴 ·s (𝑦 ·s 𝑧))))
33 oveq2 7439 . . . 4 (𝑦 = 𝐵 → (𝐴 ·s 𝑦) = (𝐴 ·s 𝐵))
3433oveq1d 7446 . . 3 (𝑦 = 𝐵 → ((𝐴 ·s 𝑦) ·s 𝑧) = ((𝐴 ·s 𝐵) ·s 𝑧))
35 oveq1 7438 . . . 4 (𝑦 = 𝐵 → (𝑦 ·s 𝑧) = (𝐵 ·s 𝑧))
3635oveq2d 7447 . . 3 (𝑦 = 𝐵 → (𝐴 ·s (𝑦 ·s 𝑧)) = (𝐴 ·s (𝐵 ·s 𝑧)))
3734, 36eqeq12d 2751 . 2 (𝑦 = 𝐵 → (((𝐴 ·s 𝑦) ·s 𝑧) = (𝐴 ·s (𝑦 ·s 𝑧)) ↔ ((𝐴 ·s 𝐵) ·s 𝑧) = (𝐴 ·s (𝐵 ·s 𝑧))))
38 oveq2 7439 . . 3 (𝑧 = 𝐶 → ((𝐴 ·s 𝐵) ·s 𝑧) = ((𝐴 ·s 𝐵) ·s 𝐶))
39 oveq2 7439 . . . 4 (𝑧 = 𝐶 → (𝐵 ·s 𝑧) = (𝐵 ·s 𝐶))
4039oveq2d 7447 . . 3 (𝑧 = 𝐶 → (𝐴 ·s (𝐵 ·s 𝑧)) = (𝐴 ·s (𝐵 ·s 𝐶)))
4138, 40eqeq12d 2751 . 2 (𝑧 = 𝐶 → (((𝐴 ·s 𝐵) ·s 𝑧) = (𝐴 ·s (𝐵 ·s 𝑧)) ↔ ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶))))
42 simpl1 1190 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → 𝑥 No )
43 simpl2 1191 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → 𝑦 No )
44 simpl3 1192 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → 𝑧 No )
45 ssun1 4188 . . . . . . . . . 10 ( L ‘𝑥) ⊆ (( L ‘𝑥) ∪ ( R ‘𝑥))
46 ssun1 4188 . . . . . . . . . 10 ( L ‘𝑦) ⊆ (( L ‘𝑦) ∪ ( R ‘𝑦))
47 ssun1 4188 . . . . . . . . . 10 ( L ‘𝑧) ⊆ (( L ‘𝑧) ∪ ( R ‘𝑧))
48 simpr11 1256 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)))
49 simpr12 1257 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)))
50 simpr13 1258 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂)))
51 simpr22 1260 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)))
52 simpr21 1259 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)))
53 simpr23 1261 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧)))
54 simpr3 1195 . . . . . . . . . 10 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))
5542, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))))
5655abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})
57 ssun2 4189 . . . . . . . . . 10 ( R ‘𝑥) ⊆ (( L ‘𝑥) ∪ ( R ‘𝑥))
58 ssun2 4189 . . . . . . . . . 10 ( R ‘𝑦) ⊆ (( L ‘𝑦) ∪ ( R ‘𝑦))
5942, 43, 44, 57, 58, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
6059abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})
6156, 60uneq12d 4179 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}))
62 ssun2 4189 . . . . . . . . . 10 ( R ‘𝑧) ⊆ (( L ‘𝑧) ∪ ( R ‘𝑧))
6342, 43, 44, 45, 58, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
6463abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})
6542, 43, 44, 57, 46, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))))
6665abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})
6764, 66uneq12d 4179 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))}))
6861, 67uneq12d 4179 . . . . . 6 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})))
69 un4 4185 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))}))
70 uncom 4168 . . . . . . . 8 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))}) = ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})
7170uneq2i 4175 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}))
7269, 71eqtri 2763 . . . . . 6 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}))
7368, 72eqtrdi 2791 . . . . 5 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})))
7442, 43, 44, 45, 46, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))))
7574abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))})
7642, 43, 44, 57, 58, 62, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))))
7776abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})
7875, 77uneq12d 4179 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))
7942, 43, 44, 45, 58, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿)) ↔ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))))
8079abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})
8142, 43, 44, 57, 46, 47, 48, 49, 50, 51, 52, 53, 54mulsasslem3 28206 . . . . . . . . 9 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿)) ↔ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))))
8281abbidv 2806 . . . . . . . 8 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))} = {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})
8380, 82uneq12d 4179 . . . . . . 7 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))}) = ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))}))
8478, 83uneq12d 4179 . . . . . 6 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})))
85 un4 4185 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))}))
86 uncom 4168 . . . . . . . 8 ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))}) = ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})
8786uneq2i 4175 . . . . . . 7 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))
8885, 87eqtri 2763 . . . . . 6 (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))
8984, 88eqtrdi 2791 . . . . 5 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))})) = (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))})))
9073, 89oveq12d 7449 . . . 4 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))}))) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))))
9142, 43, 44mulsasslem1 28204 . . . 4 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ((𝑥 ·s 𝑦) ·s 𝑧) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝐿))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝑅))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝐿 ·s 𝑦𝐿)) ·s 𝑧𝑅))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝑅)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝑅 ·s 𝑦𝑅)) ·s 𝑧𝑅))}) ∪ ({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝐿 ·s 𝑦) +s (𝑥 ·s 𝑦𝑅)) -s (𝑥𝐿 ·s 𝑦𝑅)) ·s 𝑧𝐿))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = ((((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧) +s ((𝑥 ·s 𝑦) ·s 𝑧𝐿)) -s ((((𝑥𝑅 ·s 𝑦) +s (𝑥 ·s 𝑦𝐿)) -s (𝑥𝑅 ·s 𝑦𝐿)) ·s 𝑧𝐿))}))))
9242, 43, 44mulsasslem2 28205 . . . 4 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → (𝑥 ·s (𝑦 ·s 𝑧)) = ((({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))})) |s (({𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅)))) -s (𝑥𝐿 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝐿 ·s 𝑧𝑅))))} ∪ {𝑎 ∣ ∃𝑥𝐿 ∈ ( L ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝐿 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿)))) -s (𝑥𝐿 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝑅 ·s 𝑧𝐿))))}) ∪ ({𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝐿 ∈ ( L ‘𝑦)∃𝑧𝐿 ∈ ( L ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿)))) -s (𝑥𝑅 ·s (((𝑦𝐿 ·s 𝑧) +s (𝑦 ·s 𝑧𝐿)) -s (𝑦𝐿 ·s 𝑧𝐿))))} ∪ {𝑎 ∣ ∃𝑥𝑅 ∈ ( R ‘𝑥)∃𝑦𝑅 ∈ ( R ‘𝑦)∃𝑧𝑅 ∈ ( R ‘𝑧)𝑎 = (((𝑥𝑅 ·s (𝑦 ·s 𝑧)) +s (𝑥 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅)))) -s (𝑥𝑅 ·s (((𝑦𝑅 ·s 𝑧) +s (𝑦 ·s 𝑧𝑅)) -s (𝑦𝑅 ·s 𝑧𝑅))))}))))
9390, 91, 923eqtr4d 2785 . . 3 (((𝑥 No 𝑦 No 𝑧 No ) ∧ ((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂)))) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧)))
9493ex 412 . 2 ((𝑥 No 𝑦 No 𝑧 No ) → (((∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥𝑂 ·s 𝑦𝑂) ·s 𝑧) = (𝑥𝑂 ·s (𝑦𝑂 ·s 𝑧)) ∧ ∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥𝑂 ·s 𝑦) ·s 𝑧𝑂) = (𝑥𝑂 ·s (𝑦 ·s 𝑧𝑂))) ∧ (∀𝑥𝑂 ∈ (( L ‘𝑥) ∪ ( R ‘𝑥))((𝑥𝑂 ·s 𝑦) ·s 𝑧) = (𝑥𝑂 ·s (𝑦 ·s 𝑧)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦𝑂) ·s 𝑧𝑂) = (𝑥 ·s (𝑦𝑂 ·s 𝑧𝑂)) ∧ ∀𝑦𝑂 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))((𝑥 ·s 𝑦𝑂) ·s 𝑧) = (𝑥 ·s (𝑦𝑂 ·s 𝑧))) ∧ ∀𝑧𝑂 ∈ (( L ‘𝑧) ∪ ( R ‘𝑧))((𝑥 ·s 𝑦) ·s 𝑧𝑂) = (𝑥 ·s (𝑦 ·s 𝑧𝑂))) → ((𝑥 ·s 𝑦) ·s 𝑧) = (𝑥 ·s (𝑦 ·s 𝑧))))
954, 9, 13, 17, 22, 25, 28, 32, 37, 41, 94no3inds 28006 1 ((𝐴 No 𝐵 No 𝐶 No ) → ((𝐴 ·s 𝐵) ·s 𝐶) = (𝐴 ·s (𝐵 ·s 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  {cab 2712  wral 3059  wrex 3068  cun 3961  cfv 6563  (class class class)co 7431   No csur 27699   |s cscut 27842   L cleft 27899   R cright 27900   +s cadds 28007   -s csubs 28067   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148
This theorem is referenced by:  mulsassd  28208
  Copyright terms: Public domain W3C validator