MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr13 Structured version   Visualization version   GIF version

Theorem simpr13 1351
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpr13 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)

Proof of Theorem simpr13
StepHypRef Expression
1 simpr3 1252 . 2 ((𝜂 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2antr1 1239 1 ((𝜂 ∧ ((𝜑𝜓𝜒) ∧ 𝜃𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-an 385  df-3an 1109
This theorem is referenced by:  cgr3tr4  32606  btwnoutside  32679  paddasslem8  35786  cdleme27a  36326
  Copyright terms: Public domain W3C validator