Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrr 714 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
3 | 2 | 3adantr3 1170 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: simpr1 1193 simpr1l 1229 simpr1r 1230 simpr11 1256 simpr12 1257 simpr13 1258 ispod 5513 funcnvqp 6505 dfwe2 7633 poxp 7978 cfcoflem 10037 axdc3lem 10215 fzadd2 13300 fzosubel2 13456 hashdifpr 14139 pfxccat3a 14460 sqr0lem 14961 iscatd2 17399 funcestrcsetclem9 17874 funcsetcestrclem9 17889 curf2cl 17958 yonedalem4c 18004 grpsubadd 18672 mulgnnass 18747 mulgnn0ass 18748 dprdss 19641 dprd2da 19654 srgi 19756 lsssn0 20218 zntoslem 20773 psrbaglesuppOLD 21137 blsscls 23672 iimulcl 24109 pi1grplem 24221 pi1xfrf 24225 dvconst 25090 logexprlim 26382 wwlksnextbi 28268 clwwlkccatlem 28362 clwwlkccat 28363 umgr3cyclex 28556 nvss 28964 disjdsct 31044 idlsrgmnd 31668 issgon 32100 measdivcst 32201 measdivcstALTV 32202 prv1n 33402 elmrsubrn 33491 poimirlem28 35814 ftc1anc 35867 fdc 35912 cvrnbtwn3 37297 paddasslem9 37849 paddasslem17 37857 pmapjlln1 37876 lautj 38114 lautm 38115 dfsalgen2 43887 smflimlem4 44319 lidldomnnring 45499 funcringcsetcALTV2lem9 45613 funcringcsetclem9ALTV 45636 lincresunit3lem2 45832 isthincd2 46330 |
Copyright terms: Public domain | W3C validator |