| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr1 1195 simpr1l 1231 simpr1r 1232 simpr11 1258 simpr12 1259 simpr13 1260 ispod 5531 funcnvqp 6545 dfwe2 7707 poxp 8058 cfcoflem 10163 axdc3lem 10341 fzadd2 13459 fzosubel2 13625 hashdifpr 14322 pfxccat3a 14645 sqrt0 15148 iscatd2 17587 funcestrcsetclem9 18054 funcsetcestrclem9 18069 curf2cl 18137 yonedalem4c 18183 grpsubadd 18941 mulgnnass 19022 mulgnn0ass 19023 dprdss 19943 dprd2da 19956 srgdilem 20110 lsssn0 20881 zntoslem 21493 sraassab 21805 blsscls 24422 iimulcl 24860 pi1grplem 24976 pi1xfrf 24980 dvconst 25845 logexprlim 27163 wwlksnextbi 29872 clwwlkccatlem 29969 clwwlkccat 29970 umgr3cyclex 30163 nvss 30573 disjdsct 32684 idlsrgmnd 33479 issgon 34136 measdivcst 34237 measdivcstALTV 34238 prv1n 35475 elmrsubrn 35564 poimirlem28 37698 ftc1anc 37751 fdc 37795 cvrnbtwn3 39385 paddasslem9 39937 paddasslem17 39945 pmapjlln1 39964 lautj 40202 lautm 40203 dfsalgen2 46449 smflimlem4 46882 lidldomnnring 48346 funcringcsetcALTV2lem9 48408 funcringcsetclem9ALTV 48431 lincresunit3lem2 48591 isthincd2 49548 |
| Copyright terms: Public domain | W3C validator |