Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrr 713 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
3 | 2 | 3adantr3 1169 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: simpr1 1192 simpr1l 1228 simpr1r 1229 simpr11 1255 simpr12 1256 simpr13 1257 ispod 5503 funcnvqp 6482 dfwe2 7602 poxp 7940 cfcoflem 9959 axdc3lem 10137 fzadd2 13220 fzosubel2 13375 hashdifpr 14058 pfxccat3a 14379 sqr0lem 14880 iscatd2 17307 funcestrcsetclem9 17781 funcsetcestrclem9 17796 curf2cl 17865 yonedalem4c 17911 grpsubadd 18578 mulgnnass 18653 mulgnn0ass 18654 dprdss 19547 dprd2da 19560 srgi 19662 lsssn0 20124 zntoslem 20676 psrbaglesuppOLD 21038 blsscls 23569 iimulcl 24006 pi1grplem 24118 pi1xfrf 24122 dvconst 24986 logexprlim 26278 wwlksnextbi 28160 clwwlkccatlem 28254 clwwlkccat 28255 umgr3cyclex 28448 nvss 28856 disjdsct 30937 idlsrgmnd 31561 issgon 31991 measdivcst 32092 measdivcstALTV 32093 prv1n 33293 elmrsubrn 33382 poimirlem28 35732 ftc1anc 35785 fdc 35830 cvrnbtwn3 37217 paddasslem9 37769 paddasslem17 37777 pmapjlln1 37796 lautj 38034 lautm 38035 dfsalgen2 43770 smflimlem4 44196 lidldomnnring 45376 funcringcsetcALTV2lem9 45490 funcringcsetclem9ALTV 45513 lincresunit3lem2 45709 isthincd2 46207 |
Copyright terms: Public domain | W3C validator |