| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| 3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr1 1194 simpr1l 1230 simpr1r 1231 simpr11 1257 simpr12 1258 simpr13 1259 ispod 5600 funcnvqp 6629 dfwe2 7795 poxp 8154 cfcoflem 10313 axdc3lem 10491 fzadd2 13600 fzosubel2 13765 hashdifpr 14455 pfxccat3a 14777 sqrt0 15281 iscatd2 17725 funcestrcsetclem9 18194 funcsetcestrclem9 18209 curf2cl 18277 yonedalem4c 18323 grpsubadd 19047 mulgnnass 19128 mulgnn0ass 19129 dprdss 20050 dprd2da 20063 srgdilem 20190 lsssn0 20947 zntoslem 21576 sraassab 21889 blsscls 24521 iimulcl 24967 pi1grplem 25083 pi1xfrf 25087 dvconst 25953 logexprlim 27270 wwlksnextbi 29915 clwwlkccatlem 30009 clwwlkccat 30010 umgr3cyclex 30203 nvss 30613 disjdsct 32713 idlsrgmnd 33543 issgon 34125 measdivcst 34226 measdivcstALTV 34227 prv1n 35437 elmrsubrn 35526 poimirlem28 37656 ftc1anc 37709 fdc 37753 cvrnbtwn3 39278 paddasslem9 39831 paddasslem17 39839 pmapjlln1 39858 lautj 40096 lautm 40097 dfsalgen2 46361 smflimlem4 46794 lidldomnnring 48157 funcringcsetcALTV2lem9 48219 funcringcsetclem9ALTV 48242 lincresunit3lem2 48402 isthincd2 49111 |
| Copyright terms: Public domain | W3C validator |