| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr1 1195 simpr1l 1231 simpr1r 1232 simpr11 1258 simpr12 1259 simpr13 1260 ispod 5575 funcnvqp 6605 dfwe2 7773 poxp 8132 cfcoflem 10291 axdc3lem 10469 fzadd2 13581 fzosubel2 13746 hashdifpr 14438 pfxccat3a 14761 sqrt0 15265 iscatd2 17698 funcestrcsetclem9 18165 funcsetcestrclem9 18180 curf2cl 18248 yonedalem4c 18294 grpsubadd 19016 mulgnnass 19097 mulgnn0ass 19098 dprdss 20017 dprd2da 20030 srgdilem 20157 lsssn0 20910 zntoslem 21522 sraassab 21833 blsscls 24451 iimulcl 24889 pi1grplem 25005 pi1xfrf 25009 dvconst 25875 logexprlim 27193 wwlksnextbi 29881 clwwlkccatlem 29975 clwwlkccat 29976 umgr3cyclex 30169 nvss 30579 disjdsct 32685 idlsrgmnd 33534 issgon 34159 measdivcst 34260 measdivcstALTV 34261 prv1n 35458 elmrsubrn 35547 poimirlem28 37677 ftc1anc 37730 fdc 37774 cvrnbtwn3 39299 paddasslem9 39852 paddasslem17 39860 pmapjlln1 39879 lautj 40117 lautm 40118 dfsalgen2 46337 smflimlem4 46770 lidldomnnring 48178 funcringcsetcALTV2lem9 48240 funcringcsetclem9ALTV 48263 lincresunit3lem2 48423 isthincd2 49290 |
| Copyright terms: Public domain | W3C validator |