| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr1 1195 simpr1l 1231 simpr1r 1232 simpr11 1258 simpr12 1259 simpr13 1260 ispod 5536 funcnvqp 6546 dfwe2 7710 poxp 8061 cfcoflem 10166 axdc3lem 10344 fzadd2 13462 fzosubel2 13628 hashdifpr 14322 pfxccat3a 14644 sqrt0 15148 iscatd2 17587 funcestrcsetclem9 18054 funcsetcestrclem9 18069 curf2cl 18137 yonedalem4c 18183 grpsubadd 18907 mulgnnass 18988 mulgnn0ass 18989 dprdss 19910 dprd2da 19923 srgdilem 20077 lsssn0 20851 zntoslem 21463 sraassab 21775 blsscls 24393 iimulcl 24831 pi1grplem 24947 pi1xfrf 24951 dvconst 25816 logexprlim 27134 wwlksnextbi 29839 clwwlkccatlem 29933 clwwlkccat 29934 umgr3cyclex 30127 nvss 30537 disjdsct 32646 idlsrgmnd 33452 issgon 34096 measdivcst 34197 measdivcstALTV 34198 prv1n 35414 elmrsubrn 35503 poimirlem28 37638 ftc1anc 37691 fdc 37735 cvrnbtwn3 39265 paddasslem9 39817 paddasslem17 39825 pmapjlln1 39844 lautj 40082 lautm 40083 dfsalgen2 46332 smflimlem4 46765 lidldomnnring 48230 funcringcsetcALTV2lem9 48292 funcringcsetclem9ALTV 48315 lincresunit3lem2 48475 isthincd2 49432 |
| Copyright terms: Public domain | W3C validator |