![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrr 713 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
3 | 2 | 3adantr3 1169 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: simpr1 1192 simpr1l 1228 simpr1r 1229 simpr11 1255 simpr12 1256 simpr13 1257 ispod 5596 funcnvqp 6611 dfwe2 7763 poxp 8116 cfcoflem 10269 axdc3lem 10447 fzadd2 13540 fzosubel2 13696 hashdifpr 14379 pfxccat3a 14692 sqrt0 15192 iscatd2 17629 funcestrcsetclem9 18104 funcsetcestrclem9 18119 curf2cl 18188 yonedalem4c 18234 grpsubadd 18947 mulgnnass 19025 mulgnn0ass 19026 dprdss 19940 dprd2da 19953 srgdilem 20086 lsssn0 20702 zntoslem 21331 sraassab 21641 psrbaglesuppOLD 21697 blsscls 24236 iimulcl 24680 pi1grplem 24796 pi1xfrf 24800 dvconst 25666 logexprlim 26964 wwlksnextbi 29415 clwwlkccatlem 29509 clwwlkccat 29510 umgr3cyclex 29703 nvss 30113 disjdsct 32191 idlsrgmnd 32902 issgon 33419 measdivcst 33520 measdivcstALTV 33521 prv1n 34720 elmrsubrn 34809 poimirlem28 36819 ftc1anc 36872 fdc 36916 cvrnbtwn3 38449 paddasslem9 39002 paddasslem17 39010 pmapjlln1 39029 lautj 39267 lautm 39268 dfsalgen2 45355 smflimlem4 45788 lidldomnnring 46916 funcringcsetcALTV2lem9 47030 funcringcsetclem9ALTV 47053 lincresunit3lem2 47248 isthincd2 47745 |
Copyright terms: Public domain | W3C validator |