![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
3 | 2 | 3adantr3 1170 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: simpr1 1193 simpr1l 1229 simpr1r 1230 simpr11 1256 simpr12 1257 simpr13 1258 ispod 5606 funcnvqp 6632 dfwe2 7793 poxp 8152 cfcoflem 10310 axdc3lem 10488 fzadd2 13596 fzosubel2 13761 hashdifpr 14451 pfxccat3a 14773 sqrt0 15277 iscatd2 17726 funcestrcsetclem9 18204 funcsetcestrclem9 18219 curf2cl 18288 yonedalem4c 18334 grpsubadd 19059 mulgnnass 19140 mulgnn0ass 19141 dprdss 20064 dprd2da 20077 srgdilem 20210 lsssn0 20964 zntoslem 21593 sraassab 21906 blsscls 24536 iimulcl 24980 pi1grplem 25096 pi1xfrf 25100 dvconst 25967 logexprlim 27284 wwlksnextbi 29924 clwwlkccatlem 30018 clwwlkccat 30019 umgr3cyclex 30212 nvss 30622 disjdsct 32718 idlsrgmnd 33522 issgon 34104 measdivcst 34205 measdivcstALTV 34206 prv1n 35416 elmrsubrn 35505 poimirlem28 37635 ftc1anc 37688 fdc 37732 cvrnbtwn3 39258 paddasslem9 39811 paddasslem17 39819 pmapjlln1 39838 lautj 40076 lautm 40077 dfsalgen2 46297 smflimlem4 46730 lidldomnnring 48080 funcringcsetcALTV2lem9 48142 funcringcsetclem9ALTV 48165 lincresunit3lem2 48326 isthincd2 48838 |
Copyright terms: Public domain | W3C validator |