![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
2 | 1 | adantrr 716 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
3 | 2 | 3adantr3 1171 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: simpr1 1194 simpr1l 1230 simpr1r 1231 simpr11 1257 simpr12 1258 simpr13 1259 ispod 5617 funcnvqp 6642 dfwe2 7809 poxp 8169 cfcoflem 10341 axdc3lem 10519 fzadd2 13619 fzosubel2 13776 hashdifpr 14464 pfxccat3a 14786 sqrt0 15290 iscatd2 17739 funcestrcsetclem9 18217 funcsetcestrclem9 18232 curf2cl 18301 yonedalem4c 18347 grpsubadd 19068 mulgnnass 19149 mulgnn0ass 19150 dprdss 20073 dprd2da 20086 srgdilem 20219 lsssn0 20969 zntoslem 21598 sraassab 21911 blsscls 24541 iimulcl 24985 pi1grplem 25101 pi1xfrf 25105 dvconst 25972 logexprlim 27287 wwlksnextbi 29927 clwwlkccatlem 30021 clwwlkccat 30022 umgr3cyclex 30215 nvss 30625 disjdsct 32714 idlsrgmnd 33507 issgon 34087 measdivcst 34188 measdivcstALTV 34189 prv1n 35399 elmrsubrn 35488 poimirlem28 37608 ftc1anc 37661 fdc 37705 cvrnbtwn3 39232 paddasslem9 39785 paddasslem17 39793 pmapjlln1 39812 lautj 40050 lautm 40051 dfsalgen2 46262 smflimlem4 46695 lidldomnnring 47959 funcringcsetcALTV2lem9 48021 funcringcsetclem9ALTV 48044 lincresunit3lem2 48209 isthincd2 48705 |
Copyright terms: Public domain | W3C validator |