| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr1 1195 simpr1l 1231 simpr1r 1232 simpr11 1258 simpr12 1259 simpr13 1260 ispod 5548 funcnvqp 6564 dfwe2 7730 poxp 8084 cfcoflem 10201 axdc3lem 10379 fzadd2 13496 fzosubel2 13662 hashdifpr 14356 pfxccat3a 14679 sqrt0 15183 iscatd2 17622 funcestrcsetclem9 18089 funcsetcestrclem9 18104 curf2cl 18172 yonedalem4c 18218 grpsubadd 18942 mulgnnass 19023 mulgnn0ass 19024 dprdss 19945 dprd2da 19958 srgdilem 20112 lsssn0 20886 zntoslem 21498 sraassab 21810 blsscls 24428 iimulcl 24866 pi1grplem 24982 pi1xfrf 24986 dvconst 25851 logexprlim 27169 wwlksnextbi 29874 clwwlkccatlem 29968 clwwlkccat 29969 umgr3cyclex 30162 nvss 30572 disjdsct 32676 idlsrgmnd 33478 issgon 34106 measdivcst 34207 measdivcstALTV 34208 prv1n 35411 elmrsubrn 35500 poimirlem28 37635 ftc1anc 37688 fdc 37732 cvrnbtwn3 39262 paddasslem9 39815 paddasslem17 39823 pmapjlln1 39842 lautj 40080 lautm 40081 dfsalgen2 46332 smflimlem4 46765 lidldomnnring 48217 funcringcsetcALTV2lem9 48279 funcringcsetclem9ALTV 48302 lincresunit3lem2 48462 isthincd2 49419 |
| Copyright terms: Public domain | W3C validator |