| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ad2antr1 | Structured version Visualization version GIF version | ||
| Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
| Ref | Expression |
|---|---|
| 3ad2antl.1 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3ad2antr1 | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ad2antl.1 | . . 3 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | adantrr 717 | . 2 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
| 3 | 2 | 3adantr3 1172 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓 ∧ 𝜏)) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: simpr1 1195 simpr1l 1231 simpr1r 1232 simpr11 1258 simpr12 1259 simpr13 1260 ispod 5555 funcnvqp 6580 dfwe2 7750 poxp 8107 cfcoflem 10225 axdc3lem 10403 fzadd2 13520 fzosubel2 13686 hashdifpr 14380 pfxccat3a 14703 sqrt0 15207 iscatd2 17642 funcestrcsetclem9 18109 funcsetcestrclem9 18124 curf2cl 18192 yonedalem4c 18238 grpsubadd 18960 mulgnnass 19041 mulgnn0ass 19042 dprdss 19961 dprd2da 19974 srgdilem 20101 lsssn0 20854 zntoslem 21466 sraassab 21777 blsscls 24395 iimulcl 24833 pi1grplem 24949 pi1xfrf 24953 dvconst 25818 logexprlim 27136 wwlksnextbi 29824 clwwlkccatlem 29918 clwwlkccat 29919 umgr3cyclex 30112 nvss 30522 disjdsct 32626 idlsrgmnd 33485 issgon 34113 measdivcst 34214 measdivcstALTV 34215 prv1n 35418 elmrsubrn 35507 poimirlem28 37642 ftc1anc 37695 fdc 37739 cvrnbtwn3 39269 paddasslem9 39822 paddasslem17 39830 pmapjlln1 39849 lautj 40087 lautm 40088 dfsalgen2 46339 smflimlem4 46772 lidldomnnring 48221 funcringcsetcALTV2lem9 48283 funcringcsetclem9ALTV 48306 lincresunit3lem2 48466 isthincd2 49423 |
| Copyright terms: Public domain | W3C validator |