Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqe Structured version   Visualization version   GIF version

Theorem itsclc0yqe 46937
Description: Lemma for itsclc0 46947. Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines (๐ด = ๐ต = 0). (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
itscnhlc0yqe.t ๐‘‡ = -(2 ยท (๐ต ยท ๐ถ))
itscnhlc0yqe.u ๐‘ˆ = ((๐ถโ†‘2) โˆ’ ((๐ดโ†‘2) ยท (๐‘…โ†‘2)))
Assertion
Ref Expression
itsclc0yqe (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))

Proof of Theorem itsclc0yqe
StepHypRef Expression
1 simp11 1204 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ๐ด โˆˆ โ„)
21anim1i 616 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โˆง ๐ด = 0) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด = 0))
32ancoms 460 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด = 0))
4 simpr12 1259 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ต โˆˆ โ„)
5 simpr13 1260 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ถ โˆˆ โ„)
6 simpr2 1196 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐‘… โˆˆ โ„+)
7 simpr3 1197 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))
8 itscnhlc0yqe.q . . . . 5 ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
9 itscnhlc0yqe.t . . . . 5 ๐‘‡ = -(2 ยท (๐ต ยท ๐ถ))
10 itscnhlc0yqe.u . . . . 5 ๐‘ˆ = ((๐ถโ†‘2) โˆ’ ((๐ดโ†‘2) ยท (๐‘…โ†‘2)))
118, 9, 10itschlc0yqe 46936 . . . 4 ((((๐ด โˆˆ โ„ โˆง ๐ด = 0) โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
123, 4, 5, 6, 7, 11syl311anc 1385 . . 3 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
1312ex 414 . 2 (๐ด = 0 โ†’ (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0)))
141anim1i 616 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โˆง ๐ด โ‰  0) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด โ‰  0))
1514ancoms 460 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด โ‰  0))
16 simpr12 1259 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ต โˆˆ โ„)
17 simpr13 1260 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ถ โˆˆ โ„)
18 simpr2 1196 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐‘… โˆˆ โ„+)
19 simpr3 1197 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))
208, 9, 10itscnhlc0yqe 46935 . . . 4 ((((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
2115, 16, 17, 18, 19, 20syl311anc 1385 . . 3 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
2221ex 414 . 2 (๐ด โ‰  0 โ†’ (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0)))
2313, 22pm2.61ine 3025 1 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2940  (class class class)co 7361  โ„cr 11058  0cc0 11059   + caddc 11062   ยท cmul 11064   โˆ’ cmin 11393  -cneg 11394  2c2 12216  โ„+crp 12923  โ†‘cexp 13976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-n0 12422  df-z 12508  df-uz 12772  df-rp 12924  df-seq 13916  df-exp 13977
This theorem is referenced by:  itsclc0yqsol  46940
  Copyright terms: Public domain W3C validator