Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqe Structured version   Visualization version   GIF version

Theorem itsclc0yqe 46107
Description: Lemma for itsclc0 46117. Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines (𝐴 = 𝐵 = 0). (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itsclc0yqe (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Proof of Theorem itsclc0yqe
StepHypRef Expression
1 simp11 1202 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐴 ∈ ℝ)
21anim1i 615 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝐴 = 0) → (𝐴 ∈ ℝ ∧ 𝐴 = 0))
32ancoms 459 . . . 4 ((𝐴 = 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝐴 ∈ ℝ ∧ 𝐴 = 0))
4 simpr12 1257 . . . 4 ((𝐴 = 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝐵 ∈ ℝ)
5 simpr13 1258 . . . 4 ((𝐴 = 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝐶 ∈ ℝ)
6 simpr2 1194 . . . 4 ((𝐴 = 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝑅 ∈ ℝ+)
7 simpr3 1195 . . . 4 ((𝐴 = 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))
8 itscnhlc0yqe.q . . . . 5 𝑄 = ((𝐴↑2) + (𝐵↑2))
9 itscnhlc0yqe.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
10 itscnhlc0yqe.u . . . . 5 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
118, 9, 10itschlc0yqe 46106 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
123, 4, 5, 6, 7, 11syl311anc 1383 . . 3 ((𝐴 = 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
1312ex 413 . 2 (𝐴 = 0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)))
141anim1i 615 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ 𝐴 ≠ 0) → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
1514ancoms 459 . . . 4 ((𝐴 ≠ 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))
16 simpr12 1257 . . . 4 ((𝐴 ≠ 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝐵 ∈ ℝ)
17 simpr13 1258 . . . 4 ((𝐴 ≠ 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝐶 ∈ ℝ)
18 simpr2 1194 . . . 4 ((𝐴 ≠ 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → 𝑅 ∈ ℝ+)
19 simpr3 1195 . . . 4 ((𝐴 ≠ 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))
208, 9, 10itscnhlc0yqe 46105 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
2115, 16, 17, 18, 19, 20syl311anc 1383 . . 3 ((𝐴 ≠ 0 ∧ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ))) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
2221ex 413 . 2 (𝐴 ≠ 0 → (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0)))
2313, 22pm2.61ine 3028 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cmin 11205  -cneg 11206  2c2 12028  +crp 12730  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783
This theorem is referenced by:  itsclc0yqsol  46110
  Copyright terms: Public domain W3C validator