Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqe Structured version   Visualization version   GIF version

Theorem itsclc0yqe 47437
Description: Lemma for itsclc0 47447. Quadratic equation for the y-coordinate of the intersection points of an arbitrary line and a circle. This theorem holds even for degenerate lines (๐ด = ๐ต = 0). (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
itscnhlc0yqe.t ๐‘‡ = -(2 ยท (๐ต ยท ๐ถ))
itscnhlc0yqe.u ๐‘ˆ = ((๐ถโ†‘2) โˆ’ ((๐ดโ†‘2) ยท (๐‘…โ†‘2)))
Assertion
Ref Expression
itsclc0yqe (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))

Proof of Theorem itsclc0yqe
StepHypRef Expression
1 simp11 1203 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ๐ด โˆˆ โ„)
21anim1i 615 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โˆง ๐ด = 0) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด = 0))
32ancoms 459 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด = 0))
4 simpr12 1258 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ต โˆˆ โ„)
5 simpr13 1259 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ถ โˆˆ โ„)
6 simpr2 1195 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐‘… โˆˆ โ„+)
7 simpr3 1196 . . . 4 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))
8 itscnhlc0yqe.q . . . . 5 ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
9 itscnhlc0yqe.t . . . . 5 ๐‘‡ = -(2 ยท (๐ต ยท ๐ถ))
10 itscnhlc0yqe.u . . . . 5 ๐‘ˆ = ((๐ถโ†‘2) โˆ’ ((๐ดโ†‘2) ยท (๐‘…โ†‘2)))
118, 9, 10itschlc0yqe 47436 . . . 4 ((((๐ด โˆˆ โ„ โˆง ๐ด = 0) โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
123, 4, 5, 6, 7, 11syl311anc 1384 . . 3 ((๐ด = 0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
1312ex 413 . 2 (๐ด = 0 โ†’ (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0)))
141anim1i 615 . . . . 5 ((((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โˆง ๐ด โ‰  0) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด โ‰  0))
1514ancoms 459 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐ด โˆˆ โ„ โˆง ๐ด โ‰  0))
16 simpr12 1258 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ต โˆˆ โ„)
17 simpr13 1259 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐ถ โˆˆ โ„)
18 simpr2 1195 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ๐‘… โˆˆ โ„+)
19 simpr3 1196 . . . 4 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))
208, 9, 10itscnhlc0yqe 47435 . . . 4 ((((๐ด โˆˆ โ„ โˆง ๐ด โ‰  0) โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
2115, 16, 17, 18, 19, 20syl311anc 1384 . . 3 ((๐ด โ‰  0 โˆง ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„))) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
2221ex 413 . 2 (๐ด โ‰  0 โ†’ (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0)))
2313, 22pm2.61ine 3025 1 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„+ โˆง (๐‘‹ โˆˆ โ„ โˆง ๐‘Œ โˆˆ โ„)) โ†’ ((((๐‘‹โ†‘2) + (๐‘Œโ†‘2)) = (๐‘…โ†‘2) โˆง ((๐ด ยท ๐‘‹) + (๐ต ยท ๐‘Œ)) = ๐ถ) โ†’ ((๐‘„ ยท (๐‘Œโ†‘2)) + ((๐‘‡ ยท ๐‘Œ) + ๐‘ˆ)) = 0))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   โ‰  wne 2940  (class class class)co 7408  โ„cr 11108  0cc0 11109   + caddc 11112   ยท cmul 11114   โˆ’ cmin 11443  -cneg 11444  2c2 12266  โ„+crp 12973  โ†‘cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12974  df-seq 13966  df-exp 14027
This theorem is referenced by:  itsclc0yqsol  47440
  Copyright terms: Public domain W3C validator