MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores2 Structured version   Visualization version   GIF version

Theorem smores2 8368
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
smores2 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))

Proof of Theorem smores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 8361 . . . . . . 7 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1145 . . . . . 6 (Smo 𝐹𝐹:dom 𝐹⟶On)
32ffund 6710 . . . . 5 (Smo 𝐹 → Fun 𝐹)
4 funres 6578 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝐴))
54funfnd 6567 . . . . 5 (Fun 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
63, 5syl 17 . . . 4 (Smo 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
7 df-ima 5667 . . . . . 6 (𝐹𝐴) = ran (𝐹𝐴)
8 imassrn 6058 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
97, 8eqsstrri 4006 . . . . 5 ran (𝐹𝐴) ⊆ ran 𝐹
102frnd 6714 . . . . 5 (Smo 𝐹 → ran 𝐹 ⊆ On)
119, 10sstrid 3970 . . . 4 (Smo 𝐹 → ran (𝐹𝐴) ⊆ On)
12 df-f 6535 . . . 4 ((𝐹𝐴):dom (𝐹𝐴)⟶On ↔ ((𝐹𝐴) Fn dom (𝐹𝐴) ∧ ran (𝐹𝐴) ⊆ On))
136, 11, 12sylanbrc 583 . . 3 (Smo 𝐹 → (𝐹𝐴):dom (𝐹𝐴)⟶On)
1413adantr 480 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶On)
15 smodm 8365 . . 3 (Smo 𝐹 → Ord dom 𝐹)
16 ordin 6382 . . . . 5 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord (𝐴 ∩ dom 𝐹))
17 dmres 5999 . . . . . 6 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
18 ordeq 6359 . . . . . 6 (dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹) → (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹)))
1917, 18ax-mp 5 . . . . 5 (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹))
2016, 19sylibr 234 . . . 4 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord dom (𝐹𝐴))
2120ancoms 458 . . 3 ((Ord dom 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
2215, 21sylan 580 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
23 resss 5988 . . . . . 6 (𝐹𝐴) ⊆ 𝐹
24 dmss 5882 . . . . . 6 ((𝐹𝐴) ⊆ 𝐹 → dom (𝐹𝐴) ⊆ dom 𝐹)
2523, 24ax-mp 5 . . . . 5 dom (𝐹𝐴) ⊆ dom 𝐹
261simp3bi 1147 . . . . 5 (Smo 𝐹 → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
27 ssralv 4027 . . . . 5 (dom (𝐹𝐴) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
2825, 26, 27mpsyl 68 . . . 4 (Smo 𝐹 → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
2928adantr 480 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
30 ordtr1 6396 . . . . . . . . . . 11 (Ord dom (𝐹𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
3122, 30syl 17 . . . . . . . . . 10 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
32 inss1 4212 . . . . . . . . . . . 12 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
3317, 32eqsstri 4005 . . . . . . . . . . 11 dom (𝐹𝐴) ⊆ 𝐴
3433sseli 3954 . . . . . . . . . 10 (𝑦 ∈ dom (𝐹𝐴) → 𝑦𝐴)
3531, 34syl6 35 . . . . . . . . 9 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦𝐴))
3635expcomd 416 . . . . . . . 8 ((Smo 𝐹 ∧ Ord 𝐴) → (𝑥 ∈ dom (𝐹𝐴) → (𝑦𝑥𝑦𝐴)))
3736imp31 417 . . . . . . 7 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → 𝑦𝐴)
3837fvresd 6896 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
3933sseli 3954 . . . . . . . 8 (𝑥 ∈ dom (𝐹𝐴) → 𝑥𝐴)
4039fvresd 6896 . . . . . . 7 (𝑥 ∈ dom (𝐹𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4140ad2antlr 727 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4238, 41eleq12d 2828 . . . . 5 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → (((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ (𝐹𝑦) ∈ (𝐹𝑥)))
4342ralbidva 3161 . . . 4 (((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
4443ralbidva 3161 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → (∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
4529, 44mpbird 257 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥))
46 dfsmo2 8361 . 2 (Smo (𝐹𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶On ∧ Ord dom (𝐹𝐴) ∧ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥)))
4714, 22, 45, 46syl3anbrc 1344 1 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cin 3925  wss 3926  dom cdm 5654  ran crn 5655  cres 5656  cima 5657  Ord word 6351  Oncon0 6352  Fun wfun 6525   Fn wfn 6526  wf 6527  cfv 6531  Smo wsmo 8359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-smo 8360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator