MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores2 Structured version   Visualization version   GIF version

Theorem smores2 8326
Description: A strictly monotone ordinal function restricted to an ordinal is still monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
smores2 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))

Proof of Theorem smores2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 8319 . . . . . . 7 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1145 . . . . . 6 (Smo 𝐹𝐹:dom 𝐹⟶On)
32ffund 6695 . . . . 5 (Smo 𝐹 → Fun 𝐹)
4 funres 6561 . . . . . 6 (Fun 𝐹 → Fun (𝐹𝐴))
54funfnd 6550 . . . . 5 (Fun 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
63, 5syl 17 . . . 4 (Smo 𝐹 → (𝐹𝐴) Fn dom (𝐹𝐴))
7 df-ima 5654 . . . . . 6 (𝐹𝐴) = ran (𝐹𝐴)
8 imassrn 6045 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
97, 8eqsstrri 3997 . . . . 5 ran (𝐹𝐴) ⊆ ran 𝐹
102frnd 6699 . . . . 5 (Smo 𝐹 → ran 𝐹 ⊆ On)
119, 10sstrid 3961 . . . 4 (Smo 𝐹 → ran (𝐹𝐴) ⊆ On)
12 df-f 6518 . . . 4 ((𝐹𝐴):dom (𝐹𝐴)⟶On ↔ ((𝐹𝐴) Fn dom (𝐹𝐴) ∧ ran (𝐹𝐴) ⊆ On))
136, 11, 12sylanbrc 583 . . 3 (Smo 𝐹 → (𝐹𝐴):dom (𝐹𝐴)⟶On)
1413adantr 480 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → (𝐹𝐴):dom (𝐹𝐴)⟶On)
15 smodm 8323 . . 3 (Smo 𝐹 → Ord dom 𝐹)
16 ordin 6365 . . . . 5 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord (𝐴 ∩ dom 𝐹))
17 dmres 5986 . . . . . 6 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
18 ordeq 6342 . . . . . 6 (dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹) → (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹)))
1917, 18ax-mp 5 . . . . 5 (Ord dom (𝐹𝐴) ↔ Ord (𝐴 ∩ dom 𝐹))
2016, 19sylibr 234 . . . 4 ((Ord 𝐴 ∧ Ord dom 𝐹) → Ord dom (𝐹𝐴))
2120ancoms 458 . . 3 ((Ord dom 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
2215, 21sylan 580 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → Ord dom (𝐹𝐴))
23 resss 5975 . . . . . 6 (𝐹𝐴) ⊆ 𝐹
24 dmss 5869 . . . . . 6 ((𝐹𝐴) ⊆ 𝐹 → dom (𝐹𝐴) ⊆ dom 𝐹)
2523, 24ax-mp 5 . . . . 5 dom (𝐹𝐴) ⊆ dom 𝐹
261simp3bi 1147 . . . . 5 (Smo 𝐹 → ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
27 ssralv 4018 . . . . 5 (dom (𝐹𝐴) ⊆ dom 𝐹 → (∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
2825, 26, 27mpsyl 68 . . . 4 (Smo 𝐹 → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
2928adantr 480 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥))
30 ordtr1 6379 . . . . . . . . . . 11 (Ord dom (𝐹𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
3122, 30syl 17 . . . . . . . . . 10 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦 ∈ dom (𝐹𝐴)))
32 inss1 4203 . . . . . . . . . . . 12 (𝐴 ∩ dom 𝐹) ⊆ 𝐴
3317, 32eqsstri 3996 . . . . . . . . . . 11 dom (𝐹𝐴) ⊆ 𝐴
3433sseli 3945 . . . . . . . . . 10 (𝑦 ∈ dom (𝐹𝐴) → 𝑦𝐴)
3531, 34syl6 35 . . . . . . . . 9 ((Smo 𝐹 ∧ Ord 𝐴) → ((𝑦𝑥𝑥 ∈ dom (𝐹𝐴)) → 𝑦𝐴))
3635expcomd 416 . . . . . . . 8 ((Smo 𝐹 ∧ Ord 𝐴) → (𝑥 ∈ dom (𝐹𝐴) → (𝑦𝑥𝑦𝐴)))
3736imp31 417 . . . . . . 7 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → 𝑦𝐴)
3837fvresd 6881 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
3933sseli 3945 . . . . . . . 8 (𝑥 ∈ dom (𝐹𝐴) → 𝑥𝐴)
4039fvresd 6881 . . . . . . 7 (𝑥 ∈ dom (𝐹𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4140ad2antlr 727 . . . . . 6 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
4238, 41eleq12d 2823 . . . . 5 ((((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) ∧ 𝑦𝑥) → (((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ (𝐹𝑦) ∈ (𝐹𝑥)))
4342ralbidva 3155 . . . 4 (((Smo 𝐹 ∧ Ord 𝐴) ∧ 𝑥 ∈ dom (𝐹𝐴)) → (∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
4443ralbidva 3155 . . 3 ((Smo 𝐹 ∧ Ord 𝐴) → (∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥) ↔ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
4529, 44mpbird 257 . 2 ((Smo 𝐹 ∧ Ord 𝐴) → ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥))
46 dfsmo2 8319 . 2 (Smo (𝐹𝐴) ↔ ((𝐹𝐴):dom (𝐹𝐴)⟶On ∧ Ord dom (𝐹𝐴) ∧ ∀𝑥 ∈ dom (𝐹𝐴)∀𝑦𝑥 ((𝐹𝐴)‘𝑦) ∈ ((𝐹𝐴)‘𝑥)))
4714, 22, 45, 46syl3anbrc 1344 1 ((Smo 𝐹 ∧ Ord 𝐴) → Smo (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  cin 3916  wss 3917  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Ord word 6334  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  cfv 6514  Smo wsmo 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-smo 8318
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator