| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smodm2 | Structured version Visualization version GIF version | ||
| Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| smodm2 | ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm 8373 | . 2 ⊢ (Smo 𝐹 → Ord dom 𝐹) | |
| 2 | fndm 6651 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | ordeq 6370 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
| 5 | 4 | biimpa 476 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 dom cdm 5665 Ord word 6362 Fn wfn 6536 Smo wsmo 8367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-ss 3948 df-uni 4888 df-tr 5240 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-fn 6544 df-smo 8368 |
| This theorem is referenced by: smo11 8386 smoord 8387 smoword 8388 smogt 8389 smocdmdom 8390 coftr 10295 |
| Copyright terms: Public domain | W3C validator |