MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smodm2 Structured version   Visualization version   GIF version

Theorem smodm2 8377
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smodm2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)

Proof of Theorem smodm2
StepHypRef Expression
1 smodm 8373 . 2 (Smo 𝐹 → Ord dom 𝐹)
2 fndm 6651 . . . 4 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3 ordeq 6370 . . . 4 (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
42, 3syl 17 . . 3 (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴))
54biimpa 476 . 2 ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴)
61, 5sylan2 593 1 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  dom cdm 5665  Ord word 6362   Fn wfn 6536  Smo wsmo 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-v 3465  df-ss 3948  df-uni 4888  df-tr 5240  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-fn 6544  df-smo 8368
This theorem is referenced by:  smo11  8386  smoord  8387  smoword  8388  smogt  8389  smocdmdom  8390  coftr  10295
  Copyright terms: Public domain W3C validator