Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smodm2 | Structured version Visualization version GIF version |
Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smodm2 | ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smodm 8182 | . 2 ⊢ (Smo 𝐹 → Ord dom 𝐹) | |
2 | fndm 6536 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | ordeq 6273 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
5 | 4 | biimpa 477 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴) |
6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 dom cdm 5589 Ord word 6265 Fn wfn 6428 Smo wsmo 8176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-fn 6436 df-smo 8177 |
This theorem is referenced by: smo11 8195 smoord 8196 smoword 8197 smogt 8198 smorndom 8199 coftr 10029 |
Copyright terms: Public domain | W3C validator |