| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smodm2 | Structured version Visualization version GIF version | ||
| Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| smodm2 | ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm 8363 | . 2 ⊢ (Smo 𝐹 → Ord dom 𝐹) | |
| 2 | fndm 6640 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | ordeq 6359 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
| 5 | 4 | biimpa 476 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5654 Ord word 6351 Fn wfn 6525 Smo wsmo 8357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-uni 4884 df-tr 5230 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-fn 6533 df-smo 8358 |
| This theorem is referenced by: smo11 8376 smoord 8377 smoword 8378 smogt 8379 smocdmdom 8380 coftr 10285 |
| Copyright terms: Public domain | W3C validator |