| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smodm2 | Structured version Visualization version GIF version | ||
| Description: The domain of a strictly monotone ordinal function is an ordinal. (Contributed by Mario Carneiro, 12-Mar-2013.) |
| Ref | Expression |
|---|---|
| smodm2 | ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smodm 8277 | . 2 ⊢ (Smo 𝐹 → Ord dom 𝐹) | |
| 2 | fndm 6589 | . . . 4 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | ordeq 6318 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 Fn 𝐴 → (Ord dom 𝐹 ↔ Ord 𝐴)) |
| 5 | 4 | biimpa 476 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Ord dom 𝐹) → Ord 𝐴) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5619 Ord word 6310 Fn wfn 6481 Smo wsmo 8271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-uni 4859 df-tr 5201 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-fn 6489 df-smo 8272 |
| This theorem is referenced by: smo11 8290 smoord 8291 smoword 8292 smogt 8293 smocdmdom 8294 coftr 10171 |
| Copyright terms: Public domain | W3C validator |