Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-el Structured version   Visualization version   GIF version

Theorem sn-el 40115
Description: A version of el 5287 with an inner existential quantifier on 𝑥, which avoids ax-7 2012 and ax-8 2110. (Contributed by SN, 18-Sep-2023.)
Assertion
Ref Expression
sn-el 𝑦𝑥 𝑥𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem sn-el
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-pow 5283 . 2 𝑦𝑥(∀𝑤(𝑤𝑥𝑤𝑧) → 𝑥𝑦)
2 ax6ev 1974 . . . 4 𝑥 𝑥 = 𝑧
3 ax9v1 2120 . . . . 5 (𝑥 = 𝑧 → (𝑤𝑥𝑤𝑧))
43alrimiv 1931 . . . 4 (𝑥 = 𝑧 → ∀𝑤(𝑤𝑥𝑤𝑧))
52, 4eximii 1840 . . 3 𝑥𝑤(𝑤𝑥𝑤𝑧)
6 exim 1837 . . 3 (∀𝑥(∀𝑤(𝑤𝑥𝑤𝑧) → 𝑥𝑦) → (∃𝑥𝑤(𝑤𝑥𝑤𝑧) → ∃𝑥 𝑥𝑦))
75, 6mpi 20 . 2 (∀𝑥(∀𝑤(𝑤𝑥𝑤𝑧) → 𝑥𝑦) → ∃𝑥 𝑥𝑦)
81, 7eximii 1840 1 𝑦𝑥 𝑥𝑦
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-9 2118  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  sn-dtru  40116
  Copyright terms: Public domain W3C validator