Proof of Theorem sn-axprlem3
Step | Hyp | Ref
| Expression |
1 | | axrep6 5212 |
. 2
⊢
(∀𝑤∃*𝑧if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏))) |
2 | | ax6evr 2019 |
. . . . 5
⊢
∃𝑦 𝑎 = 𝑦 |
3 | | ifptru 1072 |
. . . . . . . . . 10
⊢ (𝜑 → (if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) ↔ 𝑧 = 𝑎)) |
4 | 3 | biimpd 228 |
. . . . . . . . 9
⊢ (𝜑 → (if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑎)) |
5 | | equtrr 2026 |
. . . . . . . . 9
⊢ (𝑎 = 𝑦 → (𝑧 = 𝑎 → 𝑧 = 𝑦)) |
6 | 4, 5 | sylan9r 508 |
. . . . . . . 8
⊢ ((𝑎 = 𝑦 ∧ 𝜑) → (if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦)) |
7 | 6 | alrimiv 1931 |
. . . . . . 7
⊢ ((𝑎 = 𝑦 ∧ 𝜑) → ∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦)) |
8 | 7 | expcom 413 |
. . . . . 6
⊢ (𝜑 → (𝑎 = 𝑦 → ∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦))) |
9 | 8 | eximdv 1921 |
. . . . 5
⊢ (𝜑 → (∃𝑦 𝑎 = 𝑦 → ∃𝑦∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦))) |
10 | 2, 9 | mpi 20 |
. . . 4
⊢ (𝜑 → ∃𝑦∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦)) |
11 | | ax6evr 2019 |
. . . . 5
⊢
∃𝑦 𝑏 = 𝑦 |
12 | | ifpfal 1073 |
. . . . . . . . . 10
⊢ (¬
𝜑 → (if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) ↔ 𝑧 = 𝑏)) |
13 | 12 | biimpd 228 |
. . . . . . . . 9
⊢ (¬
𝜑 → (if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑏)) |
14 | | equtrr 2026 |
. . . . . . . . 9
⊢ (𝑏 = 𝑦 → (𝑧 = 𝑏 → 𝑧 = 𝑦)) |
15 | 13, 14 | sylan9r 508 |
. . . . . . . 8
⊢ ((𝑏 = 𝑦 ∧ ¬ 𝜑) → (if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦)) |
16 | 15 | alrimiv 1931 |
. . . . . . 7
⊢ ((𝑏 = 𝑦 ∧ ¬ 𝜑) → ∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦)) |
17 | 16 | expcom 413 |
. . . . . 6
⊢ (¬
𝜑 → (𝑏 = 𝑦 → ∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦))) |
18 | 17 | eximdv 1921 |
. . . . 5
⊢ (¬
𝜑 → (∃𝑦 𝑏 = 𝑦 → ∃𝑦∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦))) |
19 | 11, 18 | mpi 20 |
. . . 4
⊢ (¬
𝜑 → ∃𝑦∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦)) |
20 | 10, 19 | pm2.61i 182 |
. . 3
⊢
∃𝑦∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦) |
21 | | df-mo 2540 |
. . 3
⊢
(∃*𝑧if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) ↔ ∃𝑦∀𝑧(if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) → 𝑧 = 𝑦)) |
22 | 20, 21 | mpbir 230 |
. 2
⊢
∃*𝑧if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏) |
23 | 1, 22 | mpg 1801 |
1
⊢
∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏)) |