HomeHome Metamath Proof Explorer
Theorem List (p. 402 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 40101-40200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
20.26.2  Utility theorems
 
Theoremioin9i8 40101 Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022.)
(𝜑 → (𝜓𝜒))    &   (𝜒 → ¬ 𝜃)    &   (𝜓𝜃)       (𝜑 → (𝜓𝜃))
 
Theoremjaodd 40102 Double deduction form of jaoi 853. (Contributed by Steven Nguyen, 17-Jul-2022.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜏𝜃)))       (𝜑 → (𝜓 → ((𝜒𝜏) → 𝜃)))
 
Theoremsyl3an12 40103 A double syllogism inference. (Contributed by SN, 15-Sep-2024.)
(𝜑𝜓)    &   (𝜒𝜃)    &   ((𝜓𝜃𝜏) → 𝜂)       ((𝜑𝜒𝜏) → 𝜂)
 
Theoremsbtd 40104* A true statement is true upon substitution (deduction). A similar proof is possible for icht 44792. (Contributed by SN, 4-May-2024.)
(𝜑𝜓)       (𝜑 → [𝑡 / 𝑥]𝜓)
 
Theoremsbor2 40105 One direction of sbor 2307, using fewer axioms. Compare 19.33 1888. (Contributed by Steven Nguyen, 18-Aug-2023.)
(([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑𝜓))
 
Theorem19.9dev 40106* 19.9d 2199 in the case of an existential quantifier, avoiding the ax-10 2139 from nfex 2322 that would be used for the hypothesis of 19.9d 2199, at the cost of an additional DV condition on 𝑦, 𝜑. (Contributed by SN, 26-May-2024.)
(𝜑 → Ⅎ𝑥𝜓)       (𝜑 → (∃𝑥𝑦𝜓 ↔ ∃𝑦𝜓))
 
Theoremrspcedvdw 40107* Version of rspcedvd 3555 where the implicit substitution hypothesis does not have an antecedent, which also avoids a disjoint variable condition on 𝜑, 𝑥. (Contributed by SN, 20-Aug-2024.)
(𝑥 = 𝐴 → (𝜓𝜒))    &   (𝜑𝐴𝐵)    &   (𝜑𝜒)       (𝜑 → ∃𝑥𝐵 𝜓)
 
Theorem2rspcedvdw 40108* Double application of rspcedvdw 40107. (Contributed by SN, 24-Aug-2024.)
(𝑥 = 𝐴 → (𝜓𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜃))    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑌)    &   (𝜑𝜃)       (𝜑 → ∃𝑥𝑋𝑦𝑌 𝜓)
 
Theorem3rspcedvdw 40109* Triple application of rspcedvdw 40107. (Contributed by SN, 20-Aug-2024.)
(𝑥 = 𝐴 → (𝜓𝜒))    &   (𝑦 = 𝐵 → (𝜒𝜃))    &   (𝑧 = 𝐶 → (𝜃𝜏))    &   (𝜑𝐴𝑋)    &   (𝜑𝐵𝑌)    &   (𝜑𝐶𝑍)    &   (𝜑𝜏)       (𝜑 → ∃𝑥𝑋𝑦𝑌𝑧𝑍 𝜓)
 
Theorem3rspcedvd 40110* Triple application of rspcedvd 3555. (Contributed by Steven Nguyen, 27-Feb-2023.)
(𝜑𝐴𝐷)    &   (𝜑𝐵𝐷)    &   (𝜑𝐶𝐷)    &   ((𝜑𝑥 = 𝐴) → (𝜓𝜒))    &   ((𝜑𝑦 = 𝐵) → (𝜒𝜃))    &   ((𝜑𝑧 = 𝐶) → (𝜃𝜏))    &   (𝜑𝜏)       (𝜑 → ∃𝑥𝐷𝑦𝐷𝑧𝐷 𝜓)
 
Theoremeqimssd 40111 Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.)
(𝜑𝐴 = 𝐵)       (𝜑𝐴𝐵)
 
Theoremrabdif 40112* Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.)
({𝑥𝐴𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
 
Theoremsn-axrep5v 40113* A condensed form of axrep5 5211. (Contributed by SN, 21-Sep-2023.)
(∀𝑤𝑥 ∃*𝑧𝜑 → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 𝜑))
 
Theoremsn-axprlem3 40114* axprlem3 5343 using only Tarski's FOL axiom schemes and ax-rep 5205. (Contributed by SN, 22-Sep-2023.)
𝑦𝑧(𝑧𝑦 ↔ ∃𝑤𝑥 if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏))
 
Theoremsn-el 40115* A version of el 5287 with an inner existential quantifier on 𝑥, which avoids ax-7 2012 and ax-8 2110. (Contributed by SN, 18-Sep-2023.)
𝑦𝑥 𝑥𝑦
 
Theoremsn-dtru 40116* dtru 5288 without ax-8 2110 or ax-12 2173. (Contributed by SN, 21-Sep-2023.)
¬ ∀𝑥 𝑥 = 𝑦
 
Theoremsn-iotalem 40117* An unused lemma showing that many equivalences involving df-iota 6376 are potentially provable without ax-10 2139, ax-11 2156, ax-12 2173. (Contributed by SN, 6-Nov-2024.)
{𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑧}}
 
Theoremsn-iotalemcor 40118* Corollary of sn-iotalem 40117. Compare sb8iota 6388. (Contributed by SN, 6-Nov-2024.)
(℩𝑥𝜑) = (℩𝑦{𝑥𝜑} = {𝑦})
 
Theoremsn-iotaval 40119* Version of iotaval 6392 using df-iota 6376 instead of dfiota2 6377. (Contributed by SN, 6-Nov-2024.)
({𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦)
 
Theoremsn-iotauni 40120* Version of iotauni 6393 using df-iota 6376 instead of dfiota2 6377. (Contributed by SN, 6-Nov-2024.)
(∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = {𝑥𝜑})
 
Theoremsn-iotanul 40121* Version of iotanul 6396 using df-iota 6376 instead of dfiota2 6377. (Contributed by SN, 6-Nov-2024.)
(¬ ∃𝑦{𝑥𝜑} = {𝑦} → (℩𝑥𝜑) = ∅)
 
Theoremsn-iotassuni 40122 iotassuni 6397 without ax-10 2139, ax-11 2156, ax-12 2173. (Contributed by SN, 6-Nov-2024.)
(℩𝑥𝜑) ⊆ {𝑥𝜑}
 
Theoremsn-iotaex 40123 iotaex 6398 without ax-10 2139, ax-11 2156, ax-12 2173. (Contributed by SN, 6-Nov-2024.)
(℩𝑥𝜑) ∈ V
 
Theorembrif1 40124 Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
(if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶))
 
Theorembrif2 40125 Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
(𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵))
 
Theorembrif12 40126 Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.)
(if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷))
 
Theorempssexg 40127 The proper subset of a set is also a set. (Contributed by Steven Nguyen, 17-Jul-2022.)
((𝐴𝐵𝐵𝐶) → 𝐴 ∈ V)
 
Theorempssn0 40128 A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.)
(𝐴𝐵𝐵 ≠ ∅)
 
Theorempsspwb 40129 Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022.)
(𝐴𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵)
 
Theoremxppss12 40130 Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.)
((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷))
 
Theoremelpwbi 40131 Membership in a power set, biconditional. (Contributed by Steven Nguyen, 17-Jul-2022.) (Proof shortened by Steven Nguyen, 16-Sep-2022.)
𝐵 ∈ V       (𝐴𝐵𝐴 ∈ 𝒫 𝐵)
 
Theoremopelxpii 40132 Ordered pair membership in a Cartesian product (implication). (Contributed by Steven Nguyen, 17-Jul-2022.)
𝐴𝐶    &   𝐵𝐷       𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)
 
Theoremimaopab 40133* The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.)
({⟨𝑥, 𝑦⟩ ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥𝐴 𝜑}
 
Theoremfnsnbt 40134 A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.)
(𝐴 ∈ V → (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩}))
 
Theoremfnimasnd 40135 The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝑆𝐴)       (𝜑 → (𝐹 “ {𝑆}) = {(𝐹𝑆)})
 
Theoremfvmptd4 40136* Deduction version of fvmpt 6857 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   (𝜑𝐹 = (𝑥𝐷𝐵))    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremofun 40137 A function operation of unions of disjoint functions is a union of function operations. (Contributed by SN, 16-Jun-2024.)
(𝜑𝐴 Fn 𝑀)    &   (𝜑𝐵 Fn 𝑀)    &   (𝜑𝐶 Fn 𝑁)    &   (𝜑𝐷 Fn 𝑁)    &   (𝜑𝑀𝑉)    &   (𝜑𝑁𝑊)    &   (𝜑 → (𝑀𝑁) = ∅)       (𝜑 → ((𝐴𝐶) ∘f 𝑅(𝐵𝐷)) = ((𝐴f 𝑅𝐵) ∪ (𝐶f 𝑅𝐷)))
 
Theoremdfqs2 40138* Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
(𝐴 / 𝑅) = ran (𝑥𝐴 ↦ [𝑥]𝑅)
 
Theoremdfqs3 40139* Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.)
(𝐴 / 𝑅) = 𝑥𝐴 {[𝑥]𝑅}
 
Theoremqseq12d 40140 Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷))
 
Theoremqsalrel 40141* The quotient set is equal to the singleton of 𝐴 when all elements are related and 𝐴 is nonempty. (Contributed by SN, 8-Jun-2023.)
((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑥 𝑦)    &   (𝜑 Er 𝐴)    &   (𝜑𝑁𝐴)       (𝜑 → (𝐴 / ) = {𝐴})
 
Theoremelmapdd 40142 Deduction associated with elmapd 8587. (Contributed by SN, 29-Jul-2024.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)    &   (𝜑𝐶:𝐵𝐴)       (𝜑𝐶 ∈ (𝐴m 𝐵))
 
Theoremisfsuppd 40143 Deduction form of isfsupp 9062. (Contributed by SN, 29-Jul-2024.)
(𝜑𝑅𝑉)    &   (𝜑𝑍𝑊)    &   (𝜑 → Fun 𝑅)    &   (𝜑 → (𝑅 supp 𝑍) ∈ Fin)       (𝜑𝑅 finSupp 𝑍)
 
Theoremfzosumm1 40144* Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023.)
(𝜑 → (𝑁 − 1) ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ)    &   (𝑘 = (𝑁 − 1) → 𝐴 = 𝐵)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (Σ𝑘 ∈ (𝑀..^(𝑁 − 1))𝐴 + 𝐵))
 
Theoremccatcan2d 40145 Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023.)
(𝜑𝐴 ∈ Word 𝑉)    &   (𝜑𝐵 ∈ Word 𝑉)    &   (𝜑𝐶 ∈ Word 𝑉)       (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵))
 
20.26.3  Structures
 
Theoremnelsubginvcld 40146 The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   𝑁 = (invg𝐺)       (𝜑 → (𝑁𝑋) ∈ (𝐵𝑆))
 
Theoremnelsubgcld 40147 A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    + = (+g𝐺)       (𝜑 → (𝑋 + 𝑌) ∈ (𝐵𝑆))
 
Theoremnelsubgsubcld 40148 A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.)
(𝜑𝐺 ∈ Grp)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋 ∈ (𝐵𝑆))    &   𝐵 = (Base‘𝐺)    &   (𝜑𝑌𝑆)    &    = (-g𝐺)       (𝜑 → (𝑋 𝑌) ∈ (𝐵𝑆))
 
Theoremrnasclg 40149 The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.)
𝐴 = (algSc‘𝑊)    &    1 = (1r𝑊)    &   𝑁 = (LSpan‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 }))
 
Theoremselvval2lem1 40150 𝑇 is an associative algebra. For simplicity, 𝐼 stands for (𝐼𝐽) and we have 𝐽𝑊 instead of 𝐽𝐼. (Contributed by SN, 15-Dec-2023.)
𝑈 = (𝐼 mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)       (𝜑𝑇 ∈ AssAlg)
 
Theoremselvval2lem2 40151 𝐷 is a ring homomorphism. (Contributed by SN, 15-Dec-2023.)
𝑈 = (𝐼 mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)       (𝜑𝐷 ∈ (𝑅 RingHom 𝑇))
 
Theoremselvval2lem3 40152 The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023.)
𝑈 = (𝐼 mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)       (𝜑 → ran 𝐷 ∈ (SubRing‘𝑇))
 
Theoremselvval2lemn 40153 A lemma to illustrate the purpose of selvval2lem3 40152 and the value of 𝑄. Will be renamed in the future when this section is moved to main. (Contributed by SN, 5-Nov-2023.)
𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   𝑄 = ((𝐼 evalSub 𝑇)‘ran 𝐷)    &   𝑊 = (𝐼 mPoly 𝑆)    &   𝑆 = (𝑇s ran 𝐷)    &   𝑋 = (𝑇s (𝐵m 𝐼))    &   𝐵 = (Base‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)       (𝜑𝑄 ∈ (𝑊 RingHom 𝑋))
 
Theoremselvval2lem4 40154 The fourth argument passed to evalSub is in the domain (a polynomial in (𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))). (Contributed by SN, 5-Nov-2023.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐷 = (𝐶 ∘ (algSc‘𝑈))    &   𝑆 = (𝑇s ran 𝐷)    &   𝑊 = (𝐼 mPoly 𝑆)    &   𝑋 = (Base‘𝑊)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)       (𝜑 → (𝐷𝐹) ∈ 𝑋)
 
Theoremselvval2lem5 40155* The fifth argument passed to evalSub is in the domain (a function 𝐼𝐸). (Contributed by SN, 22-Feb-2024.)
𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐶 = (algSc‘𝑇)    &   𝐸 = (Base‘𝑇)    &   𝐹 = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)       (𝜑𝐹 ∈ (𝐸m 𝐼))
 
Theoremselvcl 40156 Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024.)
𝑃 = (𝐼 mPoly 𝑅)    &   𝐵 = (Base‘𝑃)    &   𝑈 = ((𝐼𝐽) mPoly 𝑅)    &   𝑇 = (𝐽 mPoly 𝑈)    &   𝐸 = (Base‘𝑇)    &   (𝜑𝐼𝑉)    &   (𝜑𝑅 ∈ CRing)    &   (𝜑𝐽𝐼)    &   (𝜑𝐹𝐵)       (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸)
 
Theoremfrlmfielbas 40157 The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.)
𝐹 = (𝑅 freeLMod 𝐼)    &   𝑁 = (Base‘𝑅)    &   𝐵 = (Base‘𝐹)       ((𝑅𝑉𝐼 ∈ Fin) → (𝑋𝐵𝑋:𝐼𝑁))
 
Theoremfrlmfzwrd 40158 A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0...𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzowrd 40159 A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       (𝑋𝐵𝑋 ∈ Word 𝑆)
 
Theoremfrlmfzolen 40160 The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝑁 ∈ ℕ0𝑋𝐵) → (♯‘𝑋) = 𝑁)
 
Theoremfrlmfzowrdb 40161 The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝑆 = (Base‘𝐾)       ((𝐾𝑉𝑁 ∈ ℕ0) → (𝑋𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁)))
 
Theoremfrlmfzoccat 40162 The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.)
𝑊 = (𝐾 freeLMod (0..^𝐿))    &   𝑋 = (𝐾 freeLMod (0..^𝑀))    &   𝑌 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝐶 = (Base‘𝑋)    &   𝐷 = (Base‘𝑌)    &   (𝜑𝐾𝑍)    &   (𝜑 → (𝑀 + 𝑁) = 𝐿)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑈𝐶)    &   (𝜑𝑉𝐷)       (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵)
 
Theoremfrlmvscadiccat 40163 Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.)
𝑊 = (𝐾 freeLMod (0..^𝐿))    &   𝑋 = (𝐾 freeLMod (0..^𝑀))    &   𝑌 = (𝐾 freeLMod (0..^𝑁))    &   𝐵 = (Base‘𝑊)    &   𝐶 = (Base‘𝑋)    &   𝐷 = (Base‘𝑌)    &   (𝜑𝐾𝑍)    &   (𝜑 → (𝑀 + 𝑁) = 𝐿)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑈𝐶)    &   (𝜑𝑉𝐷)    &   𝑂 = ( ·𝑠𝑊)    &    = ( ·𝑠𝑋)    &    · = ( ·𝑠𝑌)    &   𝑆 = (Base‘𝐾)    &   (𝜑𝐴𝑆)       (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 𝑈) ++ (𝐴 · 𝑉)))
 
Theoremismhmd 40164* Deduction version of ismhm 18347. (Contributed by SN, 27-Jul-2024.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)    &    0 = (0g𝑆)    &   𝑍 = (0g𝑇)    &   (𝜑𝑆 ∈ Mnd)    &   (𝜑𝑇 ∈ Mnd)    &   (𝜑𝐹:𝐵𝐶)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))    &   (𝜑 → (𝐹0 ) = 𝑍)       (𝜑𝐹 ∈ (𝑆 MndHom 𝑇))
 
Theoremablcmnd 40165 An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝐺 ∈ Abel)       (𝜑𝐺 ∈ CMnd)
 
Theoremringcld 40166 Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremringassd 40167 Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremringlidmd 40168 The unit element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → ( 1 · 𝑋) = 𝑋)
 
Theoremringridmd 40169 The unit element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · 1 ) = 𝑋)
 
Theoremringabld 40170 A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ Abel)
 
Theoremringcmnd 40171 A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ CMnd)
 
Theoremdrngringd 40172 A division ring is a ring. (Contributed by SN, 16-May-2024.)
(𝜑𝑅 ∈ DivRing)       (𝜑𝑅 ∈ Ring)
 
Theoremdrnggrpd 40173 A division ring is a group. (Contributed by SN, 16-May-2024.)
(𝜑𝑅 ∈ DivRing)       (𝜑𝑅 ∈ Grp)
 
Theoremdrnginvrcld 40174 Closure of the multiplicative inverse in a division ring. (reccld 11674 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝐼𝑋) ∈ 𝐵)
 
Theoremdrnginvrn0d 40175 A multiplicative inverse in a division ring is nonzero. (recne0d 11675 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝐼𝑋) ≠ 0 )
 
Theoremdrnginvrld 40176 Property of the multiplicative inverse in a division ring. (recid2d 11677 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → ((𝐼𝑋) · 𝑋) = 1 )
 
Theoremdrnginvrrd 40177 Property of the multiplicative inverse in a division ring. (recidd 11676 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑋0 )       (𝜑 → (𝑋 · (𝐼𝑋)) = 1 )
 
Theoremdrngmulcanad 40178 Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11540 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑍0 )    &   (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌))       (𝜑𝑋 = 𝑌)
 
Theoremdrngmulcan2ad 40179 Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11541 analog). (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑍0 )    &   (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍))       (𝜑𝑋 = 𝑌)
 
Theoremdrnginvmuld 40180 Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)    &    · = (.r𝑅)    &   𝐼 = (invr𝑅)    &   (𝜑𝑅 ∈ DivRing)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )       (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼𝑌) · (𝐼𝑋)))
 
Theoremlmodgrpd 40181 A left module is a group. (Contributed by SN, 16-May-2024.)
(𝜑𝑊 ∈ LMod)       (𝜑𝑊 ∈ Grp)
 
Theoremlvecgrp 40182 A vector space is a group. (Contributed by SN, 28-May-2023.)
(𝑊 ∈ LVec → 𝑊 ∈ Grp)
 
Theoremlveclmodd 40183 A vector space is a left module. (Contributed by SN, 16-May-2024.)
(𝜑𝑊 ∈ LVec)       (𝜑𝑊 ∈ LMod)
 
Theoremlvecgrpd 40184 A vector space is a group. (Contributed by SN, 16-May-2024.)
(𝜑𝑊 ∈ LVec)       (𝜑𝑊 ∈ Grp)
 
Theoremlvecring 40185 The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.)
𝐹 = (Scalar‘𝑊)       (𝑊 ∈ LVec → 𝐹 ∈ Ring)
 
Theoremlmhmlvec 40186 The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.)
(𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec))
 
Theoremfrlm0vald 40187 All coordinates of the zero vector are zero. (Contributed by SN, 14-Aug-2024.)
𝐹 = (𝑅 freeLMod 𝐼)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑊)    &   (𝜑𝐽𝐼)       (𝜑 → ((0g𝐹)‘𝐽) = 0 )
 
Theoremfrlmsnic 40188* Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.)
𝑊 = (𝐾 freeLMod {𝐼})    &   𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥𝐼))       ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾)))
 
Theoremuvccl 40189 A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝑌 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝑌)       ((𝑅 ∈ Ring ∧ 𝐼𝑊𝐽𝐼) → (𝑈𝐽) ∈ 𝐵)
 
Theoremuvcn0 40190 A unit vector is nonzero. (Contributed by Steven Nguyen, 16-Jul-2023.)
𝑈 = (𝑅 unitVec 𝐼)    &   𝑌 = (𝑅 freeLMod 𝐼)    &   𝐵 = (Base‘𝑌)    &    0 = (0g𝑌)       ((𝑅 ∈ NzRing ∧ 𝐼𝑊𝐽𝐼) → (𝑈𝐽) ≠ 0 )
 
Theorempwselbasr 40191 The reverse direction of pwselbasb 17116: a function between the index and base set of a structure is an element of the structure power. (Contributed by SN, 29-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &   𝑉 = (Base‘𝑌)    &   (𝜑𝑅𝑊)    &   (𝜑𝐼𝑍)    &   (𝜑𝑋:𝐼𝐵)       (𝜑𝑋𝑉)
 
Theorempwspjmhmmgpd 40192* The projection given by pwspjmhm 18383 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   𝑀 = (mulGrp‘𝑌)    &   𝑇 = (mulGrp‘𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑉)    &   (𝜑𝐴𝐼)       (𝜑 → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑀 MndHom 𝑇))
 
Theorempwsexpg 40193 Value of a group exponentiation in a structure power. Compare pwsmulg 18663. (Contributed by SN, 30-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑌)    &   𝑀 = (mulGrp‘𝑌)    &   𝑇 = (mulGrp‘𝑅)    &    = (.g𝑀)    &    · = (.g𝑇)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝐼𝑉)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐵)    &   (𝜑𝐴𝐼)       (𝜑 → ((𝑁 𝑋)‘𝐴) = (𝑁 · (𝑋𝐴)))
 
Theorempwsgprod 40194* Finite products in a power structure are taken componentwise. Compare pwsgsum 19498. (Contributed by SN, 30-Jul-2024.)
𝑌 = (𝑅s 𝐼)    &   𝐵 = (Base‘𝑅)    &    1 = (1r𝑌)    &   𝑀 = (mulGrp‘𝑌)    &   𝑇 = (mulGrp‘𝑅)    &   (𝜑𝐼𝑉)    &   (𝜑𝐽𝑊)    &   (𝜑𝑅 ∈ CRing)    &   ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)    &   (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 1 )       (𝜑 → (𝑀 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑇 Σg (𝑦𝐽𝑈))))
 
Theoremevlsval3 40195* Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝐵 = (Base‘𝑃)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐾 = (Base‘𝑆)    &   𝑈 = (𝑆s 𝑅)    &   𝑇 = (𝑆s (𝐾m 𝐼))    &   𝑀 = (mulGrp‘𝑇)    &    = (.g𝑀)    &    · = (.r𝑇)    &   𝐸 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))    &   𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))    &   𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))       (𝜑𝑄 = 𝐸)
 
Theoremevlsscaval 40196 Polynomial evaluation builder for a scalar. Compare evl1scad 21411. Note that scalar multiplication by 𝑋 is the same as vector multiplication by (𝐴𝑋) by asclmul1 21000. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   𝐴 = (algSc‘𝑃)    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝑅)    &   (𝜑𝐿 ∈ (𝐾m 𝐼))       (𝜑 → ((𝐴𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴𝑋))‘𝐿) = 𝑋))
 
Theoremevlsvarval 40197 Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑉 = (𝐼 mVar 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑊)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝑋𝐼)    &   (𝜑𝐴 ∈ (𝐾m 𝐼))       (𝜑 → ((𝑉𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝑉𝑋))‘𝐴) = (𝐴𝑋)))
 
Theoremevlsbagval 40198* Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since 0 and 1 using 𝑈 instead of 𝑆 is convenient for its sole use case mhphf 40208, but may not be convenient for other uses. (Contributed by SN, 29-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝑊 = (Base‘𝑃)    &   𝐾 = (Base‘𝑆)    &   𝑀 = (mulGrp‘𝑆)    &    = (.g𝑀)    &    0 = (0g𝑈)    &    1 = (1r𝑈)    &   𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}    &   𝐹 = (𝑠𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 ))    &   (𝜑𝐼𝑉)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑𝐵𝐷)       (𝜑 → (𝐹𝑊 ∧ ((𝑄𝐹)‘𝐴) = (𝑀 Σg (𝑣𝐼 ↦ ((𝐵𝑣) (𝐴𝑣))))))
 
Theoremevlsexpval 40199 Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &    = (.g‘(mulGrp‘𝑃))    &    = (.g‘(mulGrp‘𝑆))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑁 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 𝑀))‘𝐴) = (𝑁 𝑉)))
 
Theoremevlsaddval 40200 Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.)
𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)    &   𝑃 = (𝐼 mPoly 𝑈)    &   𝑈 = (𝑆s 𝑅)    &   𝐾 = (Base‘𝑆)    &   𝐵 = (Base‘𝑃)    &   (𝜑𝐼𝑍)    &   (𝜑𝑆 ∈ CRing)    &   (𝜑𝑅 ∈ (SubRing‘𝑆))    &   (𝜑𝐴 ∈ (𝐾m 𝐼))    &   (𝜑 → (𝑀𝐵 ∧ ((𝑄𝑀)‘𝐴) = 𝑉))    &   (𝜑 → (𝑁𝐵 ∧ ((𝑄𝑁)‘𝐴) = 𝑊))    &    = (+g𝑃)    &    + = (+g𝑆)       (𝜑 → ((𝑀 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 𝑁))‘𝐴) = (𝑉 + 𝑊)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >