Home | Metamath
Proof Explorer Theorem List (p. 402 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ioin9i8 40101 | Miscellaneous inference creating a biconditional from an implied converse implication. (Contributed by Steven Nguyen, 17-Jul-2022.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜒 → ¬ 𝜃) & ⊢ (𝜓 → 𝜃) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | ||
Theorem | jaodd 40102 | Double deduction form of jaoi 853. (Contributed by Steven Nguyen, 17-Jul-2022.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜏) → 𝜃))) | ||
Theorem | syl3an12 40103 | A double syllogism inference. (Contributed by SN, 15-Sep-2024.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) | ||
Theorem | sbtd 40104* | A true statement is true upon substitution (deduction). A similar proof is possible for icht 44792. (Contributed by SN, 4-May-2024.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → [𝑡 / 𝑥]𝜓) | ||
Theorem | sbor2 40105 | One direction of sbor 2307, using fewer axioms. Compare 19.33 1888. (Contributed by Steven Nguyen, 18-Aug-2023.) |
⊢ (([𝑡 / 𝑥]𝜑 ∨ [𝑡 / 𝑥]𝜓) → [𝑡 / 𝑥](𝜑 ∨ 𝜓)) | ||
Theorem | 19.9dev 40106* | 19.9d 2199 in the case of an existential quantifier, avoiding the ax-10 2139 from nfex 2322 that would be used for the hypothesis of 19.9d 2199, at the cost of an additional DV condition on 𝑦, 𝜑. (Contributed by SN, 26-May-2024.) |
⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥∃𝑦𝜓 ↔ ∃𝑦𝜓)) | ||
Theorem | rspcedvdw 40107* | Version of rspcedvd 3555 where the implicit substitution hypothesis does not have an antecedent, which also avoids a disjoint variable condition on 𝜑, 𝑥. (Contributed by SN, 20-Aug-2024.) |
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | 2rspcedvdw 40108* | Double application of rspcedvdw 40107. (Contributed by SN, 24-Aug-2024.) |
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝜓) | ||
Theorem | 3rspcedvdw 40109* | Triple application of rspcedvdw 40107. (Contributed by SN, 20-Aug-2024.) |
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∃𝑧 ∈ 𝑍 𝜓) | ||
Theorem | 3rspcedvd 40110* | Triple application of rspcedvd 3555. (Contributed by Steven Nguyen, 27-Feb-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (𝜒 ↔ 𝜃)) & ⊢ ((𝜑 ∧ 𝑧 = 𝐶) → (𝜃 ↔ 𝜏)) & ⊢ (𝜑 → 𝜏) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐷 ∃𝑦 ∈ 𝐷 ∃𝑧 ∈ 𝐷 𝜓) | ||
Theorem | eqimssd 40111 | Equality implies inclusion, deduction version. (Contributed by SN, 6-Nov-2024.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | rabdif 40112* | Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
Theorem | sn-axrep5v 40113* | A condensed form of axrep5 5211. (Contributed by SN, 21-Sep-2023.) |
⊢ (∀𝑤 ∈ 𝑥 ∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) | ||
Theorem | sn-axprlem3 40114* | axprlem3 5343 using only Tarski's FOL axiom schemes and ax-rep 5205. (Contributed by SN, 22-Sep-2023.) |
⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 if-(𝜑, 𝑧 = 𝑎, 𝑧 = 𝑏)) | ||
Theorem | sn-el 40115* | A version of el 5287 with an inner existential quantifier on 𝑥, which avoids ax-7 2012 and ax-8 2110. (Contributed by SN, 18-Sep-2023.) |
⊢ ∃𝑦∃𝑥 𝑥 ∈ 𝑦 | ||
Theorem | sn-dtru 40116* | dtru 5288 without ax-8 2110 or ax-12 2173. (Contributed by SN, 21-Sep-2023.) |
⊢ ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | sn-iotalem 40117* | An unused lemma showing that many equivalences involving df-iota 6376 are potentially provable without ax-10 2139, ax-11 2156, ax-12 2173. (Contributed by SN, 6-Nov-2024.) |
⊢ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧 ∣ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} = {𝑧}} | ||
Theorem | sn-iotalemcor 40118* | Corollary of sn-iotalem 40117. Compare sb8iota 6388. (Contributed by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) = (℩𝑦{𝑥 ∣ 𝜑} = {𝑦}) | ||
Theorem | sn-iotaval 40119* | Version of iotaval 6392 using df-iota 6376 instead of dfiota2 6377. (Contributed by SN, 6-Nov-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = 𝑦) | ||
Theorem | sn-iotauni 40120* | Version of iotauni 6393 using df-iota 6376 instead of dfiota2 6377. (Contributed by SN, 6-Nov-2024.) |
⊢ (∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∪ {𝑥 ∣ 𝜑}) | ||
Theorem | sn-iotanul 40121* | Version of iotanul 6396 using df-iota 6376 instead of dfiota2 6377. (Contributed by SN, 6-Nov-2024.) |
⊢ (¬ ∃𝑦{𝑥 ∣ 𝜑} = {𝑦} → (℩𝑥𝜑) = ∅) | ||
Theorem | sn-iotassuni 40122 | iotassuni 6397 without ax-10 2139, ax-11 2156, ax-12 2173. (Contributed by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ⊆ ∪ {𝑥 ∣ 𝜑} | ||
Theorem | sn-iotaex 40123 | iotaex 6398 without ax-10 2139, ax-11 2156, ax-12 2173. (Contributed by SN, 6-Nov-2024.) |
⊢ (℩𝑥𝜑) ∈ V | ||
Theorem | brif1 40124 | Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
⊢ (if(𝜑, 𝐴, 𝐵)𝑅𝐶 ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐶)) | ||
Theorem | brif2 40125 | Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
⊢ (𝐶𝑅if(𝜑, 𝐴, 𝐵) ↔ if-(𝜑, 𝐶𝑅𝐴, 𝐶𝑅𝐵)) | ||
Theorem | brif12 40126 | Move a relation inside and outside the conditional operator. (Contributed by SN, 14-Aug-2024.) |
⊢ (if(𝜑, 𝐴, 𝐵)𝑅if(𝜑, 𝐶, 𝐷) ↔ if-(𝜑, 𝐴𝑅𝐶, 𝐵𝑅𝐷)) | ||
Theorem | pssexg 40127 | The proper subset of a set is also a set. (Contributed by Steven Nguyen, 17-Jul-2022.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
Theorem | pssn0 40128 | A proper superset is nonempty. (Contributed by Steven Nguyen, 17-Jul-2022.) |
⊢ (𝐴 ⊊ 𝐵 → 𝐵 ≠ ∅) | ||
Theorem | psspwb 40129 | Classes are proper subclasses if and only if their power classes are proper subclasses. (Contributed by Steven Nguyen, 17-Jul-2022.) |
⊢ (𝐴 ⊊ 𝐵 ↔ 𝒫 𝐴 ⊊ 𝒫 𝐵) | ||
Theorem | xppss12 40130 | Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐶 ⊊ 𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷)) | ||
Theorem | elpwbi 40131 | Membership in a power set, biconditional. (Contributed by Steven Nguyen, 17-Jul-2022.) (Proof shortened by Steven Nguyen, 16-Sep-2022.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ∈ 𝒫 𝐵) | ||
Theorem | opelxpii 40132 | Ordered pair membership in a Cartesian product (implication). (Contributed by Steven Nguyen, 17-Jul-2022.) |
⊢ 𝐴 ∈ 𝐶 & ⊢ 𝐵 ∈ 𝐷 ⇒ ⊢ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) | ||
Theorem | imaopab 40133* | The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023.) |
⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | ||
Theorem | fnsnbt 40134 | A function's domain is a singleton iff the function is a singleton. (Contributed by Steven Nguyen, 18-Aug-2023.) |
⊢ (𝐴 ∈ V → (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉})) | ||
Theorem | fnimasnd 40135 | The image of a function by a singleton whose element is in the domain of the function. (Contributed by Steven Nguyen, 7-Jun-2023.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝑆 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹 “ {𝑆}) = {(𝐹‘𝑆)}) | ||
Theorem | fvmptd4 40136* | Deduction version of fvmpt 6857 (where the substitution hypothesis does not have the antecedent 𝜑). (Contributed by SN, 26-Jul-2024.) |
⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵)) & ⊢ (𝜑 → 𝐴 ∈ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = 𝐶) | ||
Theorem | ofun 40137 | A function operation of unions of disjoint functions is a union of function operations. (Contributed by SN, 16-Jun-2024.) |
⊢ (𝜑 → 𝐴 Fn 𝑀) & ⊢ (𝜑 → 𝐵 Fn 𝑀) & ⊢ (𝜑 → 𝐶 Fn 𝑁) & ⊢ (𝜑 → 𝐷 Fn 𝑁) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ 𝑊) & ⊢ (𝜑 → (𝑀 ∩ 𝑁) = ∅) ⇒ ⊢ (𝜑 → ((𝐴 ∪ 𝐶) ∘f 𝑅(𝐵 ∪ 𝐷)) = ((𝐴 ∘f 𝑅𝐵) ∪ (𝐶 ∘f 𝑅𝐷))) | ||
Theorem | dfqs2 40138* | Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
⊢ (𝐴 / 𝑅) = ran (𝑥 ∈ 𝐴 ↦ [𝑥]𝑅) | ||
Theorem | dfqs3 40139* | Alternate definition of quotient set. (Contributed by Steven Nguyen, 7-Jun-2023.) |
⊢ (𝐴 / 𝑅) = ∪ 𝑥 ∈ 𝐴 {[𝑥]𝑅} | ||
Theorem | qseq12d 40140 | Equality theorem for quotient set, deduction form. (Contributed by Steven Nguyen, 30-Apr-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐷)) | ||
Theorem | qsalrel 40141* | The quotient set is equal to the singleton of 𝐴 when all elements are related and 𝐴 is nonempty. (Contributed by SN, 8-Jun-2023.) |
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → 𝑥 ∼ 𝑦) & ⊢ (𝜑 → ∼ Er 𝐴) & ⊢ (𝜑 → 𝑁 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐴 / ∼ ) = {𝐴}) | ||
Theorem | elmapdd 40142 | Deduction associated with elmapd 8587. (Contributed by SN, 29-Jul-2024.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶:𝐵⟶𝐴) ⇒ ⊢ (𝜑 → 𝐶 ∈ (𝐴 ↑m 𝐵)) | ||
Theorem | isfsuppd 40143 | Deduction form of isfsupp 9062. (Contributed by SN, 29-Jul-2024.) |
⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑊) & ⊢ (𝜑 → Fun 𝑅) & ⊢ (𝜑 → (𝑅 supp 𝑍) ∈ Fin) ⇒ ⊢ (𝜑 → 𝑅 finSupp 𝑍) | ||
Theorem | fzosumm1 40144* | Separate out the last term in a finite sum. (Contributed by Steven Nguyen, 22-Aug-2023.) |
⊢ (𝜑 → (𝑁 − 1) ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀..^𝑁)) → 𝐴 ∈ ℂ) & ⊢ (𝑘 = (𝑁 − 1) → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = (Σ𝑘 ∈ (𝑀..^(𝑁 − 1))𝐴 + 𝐵)) | ||
Theorem | ccatcan2d 40145 | Cancellation law for concatenation. (Contributed by SN, 6-Sep-2023.) |
⊢ (𝜑 → 𝐴 ∈ Word 𝑉) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑉) & ⊢ (𝜑 → 𝐶 ∈ Word 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 ++ 𝐶) = (𝐵 ++ 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | nelsubginvcld 40146 | The inverse of a non-subgroup-member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) ∈ (𝐵 ∖ 𝑆)) | ||
Theorem | nelsubgcld 40147 | A non-subgroup-member plus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
Theorem | nelsubgsubcld 40148 | A non-subgroup-member minus a subgroup member is a non-subgroup-member. (Contributed by Steven Nguyen, 15-Apr-2023.) |
⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ 𝑆)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ (𝐵 ∖ 𝑆)) | ||
Theorem | rnasclg 40149 | The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ 𝐴 = (algSc‘𝑊) & ⊢ 1 = (1r‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring) → ran 𝐴 = (𝑁‘{ 1 })) | ||
Theorem | selvval2lem1 40150 | 𝑇 is an associative algebra. For simplicity, 𝐼 stands for (𝐼 ∖ 𝐽) and we have 𝐽 ∈ 𝑊 instead of 𝐽 ⊆ 𝐼. (Contributed by SN, 15-Dec-2023.) |
⊢ 𝑈 = (𝐼 mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝑇 ∈ AssAlg) | ||
Theorem | selvval2lem2 40151 | 𝐷 is a ring homomorphism. (Contributed by SN, 15-Dec-2023.) |
⊢ 𝑈 = (𝐼 mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ 𝐶 = (algSc‘𝑇) & ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → 𝐷 ∈ (𝑅 RingHom 𝑇)) | ||
Theorem | selvval2lem3 40152 | The third argument passed to evalSub is in the domain. (Contributed by SN, 15-Dec-2023.) |
⊢ 𝑈 = (𝐼 mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ 𝐶 = (algSc‘𝑇) & ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) ⇒ ⊢ (𝜑 → ran 𝐷 ∈ (SubRing‘𝑇)) | ||
Theorem | selvval2lemn 40153 | A lemma to illustrate the purpose of selvval2lem3 40152 and the value of 𝑄. Will be renamed in the future when this section is moved to main. (Contributed by SN, 5-Nov-2023.) |
⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ 𝐶 = (algSc‘𝑇) & ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) & ⊢ 𝑄 = ((𝐼 evalSub 𝑇)‘ran 𝐷) & ⊢ 𝑊 = (𝐼 mPoly 𝑆) & ⊢ 𝑆 = (𝑇 ↾s ran 𝐷) & ⊢ 𝑋 = (𝑇 ↑s (𝐵 ↑m 𝐼)) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) ⇒ ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑋)) | ||
Theorem | selvval2lem4 40154 | The fourth argument passed to evalSub is in the domain (a polynomial in (𝐼 mPoly (𝐽 mPoly ((𝐼 ∖ 𝐽) mPoly 𝑅)))). (Contributed by SN, 5-Nov-2023.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ 𝐶 = (algSc‘𝑇) & ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) & ⊢ 𝑆 = (𝑇 ↾s ran 𝐷) & ⊢ 𝑊 = (𝐼 mPoly 𝑆) & ⊢ 𝑋 = (Base‘𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐷 ∘ 𝐹) ∈ 𝑋) | ||
Theorem | selvval2lem5 40155* | The fifth argument passed to evalSub is in the domain (a function 𝐼⟶𝐸). (Contributed by SN, 22-Feb-2024.) |
⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ 𝐶 = (algSc‘𝑇) & ⊢ 𝐸 = (Base‘𝑇) & ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) | ||
Theorem | selvcl 40156 | Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024.) |
⊢ 𝑃 = (𝐼 mPoly 𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) & ⊢ 𝑇 = (𝐽 mPoly 𝑈) & ⊢ 𝐸 = (Base‘𝑇) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝐽 ⊆ 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸) | ||
Theorem | frlmfielbas 40157 | The vectors of a finite free module are the functions from 𝐼 to 𝑁. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 𝑁 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝐹) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ Fin) → (𝑋 ∈ 𝐵 ↔ 𝑋:𝐼⟶𝑁)) | ||
Theorem | frlmfzwrd 40158 | A vector of a module with indices from 0 to 𝑁 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0...𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
Theorem | frlmfzowrd 40159 | A vector of a module with indices from 0 to 𝑁 − 1 is a word over the scalars of the module. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ Word 𝑆) | ||
Theorem | frlmfzolen 40160 | The dimension of a vector of a module with indices from 0 to 𝑁 − 1. (Contributed by SN, 1-Sep-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (♯‘𝑋) = 𝑁) | ||
Theorem | frlmfzowrdb 40161 | The vectors of a module with indices 0 to 𝑁 − 1 are the length- 𝑁 words over the scalars of the module. (Contributed by SN, 1-Sep-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑆 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ Word 𝑆 ∧ (♯‘𝑋) = 𝑁))) | ||
Theorem | frlmfzoccat 40162 | The concatenation of two vectors of dimension 𝑁 and 𝑀 forms a vector of dimension 𝑁 + 𝑀. (Contributed by SN, 31-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝑈 ++ 𝑉) ∈ 𝐵) | ||
Theorem | frlmvscadiccat 40163 | Scalar multiplication distributes over concatenation. (Contributed by SN, 6-Sep-2023.) |
⊢ 𝑊 = (𝐾 freeLMod (0..^𝐿)) & ⊢ 𝑋 = (𝐾 freeLMod (0..^𝑀)) & ⊢ 𝑌 = (𝐾 freeLMod (0..^𝑁)) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ 𝐷 = (Base‘𝑌) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → (𝑀 + 𝑁) = 𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑈 ∈ 𝐶) & ⊢ (𝜑 → 𝑉 ∈ 𝐷) & ⊢ 𝑂 = ( ·𝑠 ‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝑋) & ⊢ · = ( ·𝑠 ‘𝑌) & ⊢ 𝑆 = (Base‘𝐾) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐴𝑂(𝑈 ++ 𝑉)) = ((𝐴 ∙ 𝑈) ++ (𝐴 · 𝑉))) | ||
Theorem | ismhmd 40164* | Deduction version of ismhm 18347. (Contributed by SN, 27-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝐶 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝑍 = (0g‘𝑇) & ⊢ (𝜑 → 𝑆 ∈ Mnd) & ⊢ (𝜑 → 𝑇 ∈ Mnd) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → (𝐹‘ 0 ) = 𝑍) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 MndHom 𝑇)) | ||
Theorem | ablcmnd 40165 | An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝐺 ∈ Abel) ⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) | ||
Theorem | ringcld 40166 | Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | ringassd 40167 | Associative law for multiplication in a ring. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍))) | ||
Theorem | ringlidmd 40168 | The unit element of a ring is a left multiplicative identity. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 · 𝑋) = 𝑋) | ||
Theorem | ringridmd 40169 | The unit element of a ring is a right multiplicative identity. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) | ||
Theorem | ringabld 40170 | A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑅 ∈ Abel) | ||
Theorem | ringcmnd 40171 | A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.) |
⊢ (𝜑 → 𝑅 ∈ Ring) ⇒ ⊢ (𝜑 → 𝑅 ∈ CMnd) | ||
Theorem | drngringd 40172 | A division ring is a ring. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Ring) | ||
Theorem | drnggrpd 40173 | A division ring is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑅 ∈ DivRing) ⇒ ⊢ (𝜑 → 𝑅 ∈ Grp) | ||
Theorem | drnginvrcld 40174 | Closure of the multiplicative inverse in a division ring. (reccld 11674 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ∈ 𝐵) | ||
Theorem | drnginvrn0d 40175 | A multiplicative inverse in a division ring is nonzero. (recne0d 11675 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) ≠ 0 ) | ||
Theorem | drnginvrld 40176 | Property of the multiplicative inverse in a division ring. (recid2d 11677 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐼‘𝑋) · 𝑋) = 1 ) | ||
Theorem | drnginvrrd 40177 | Property of the multiplicative inverse in a division ring. (recidd 11676 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 · (𝐼‘𝑋)) = 1 ) | ||
Theorem | drngmulcanad 40178 | Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11540 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | drngmulcan2ad 40179 | Cancellation of a nonzero factor on the right for multiplication. (mulcan2ad 11541 analog). (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ≠ 0 ) & ⊢ (𝜑 → (𝑋 · 𝑍) = (𝑌 · 𝑍)) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | drnginvmuld 40180 | Inverse of a nonzero product. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐼 = (invr‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ DivRing) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≠ 0 ) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐼‘(𝑋 · 𝑌)) = ((𝐼‘𝑌) · (𝐼‘𝑋))) | ||
Theorem | lmodgrpd 40181 | A left module is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) | ||
Theorem | lvecgrp 40182 | A vector space is a group. (Contributed by SN, 28-May-2023.) |
⊢ (𝑊 ∈ LVec → 𝑊 ∈ Grp) | ||
Theorem | lveclmodd 40183 | A vector space is a left module. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) | ||
Theorem | lvecgrpd 40184 | A vector space is a group. (Contributed by SN, 16-May-2024.) |
⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) | ||
Theorem | lvecring 40185 | The scalar component of a vector space is a ring. (Contributed by SN, 28-May-2023.) |
⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐹 ∈ Ring) | ||
Theorem | lmhmlvec 40186 | The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.) |
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) | ||
Theorem | frlm0vald 40187 | All coordinates of the zero vector are zero. (Contributed by SN, 14-Aug-2024.) |
⊢ 𝐹 = (𝑅 freeLMod 𝐼) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((0g‘𝐹)‘𝐽) = 0 ) | ||
Theorem | frlmsnic 40188* | Given a free module with a singleton as the index set, that is, a free module of one-dimensional vectors, the function that maps each vector to its coordinate is a module isomorphism from that module to its ring of scalars seen as a module. (Contributed by Steven Nguyen, 18-Aug-2023.) |
⊢ 𝑊 = (𝐾 freeLMod {𝐼}) & ⊢ 𝐹 = (𝑥 ∈ (Base‘𝑊) ↦ (𝑥‘𝐼)) ⇒ ⊢ ((𝐾 ∈ Ring ∧ 𝐼 ∈ V) → 𝐹 ∈ (𝑊 LMIso (ringLMod‘𝐾))) | ||
Theorem | uvccl 40189 | A unit vector is a vector. (Contributed by Steven Nguyen, 16-Jul-2023.) |
⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) ∈ 𝐵) | ||
Theorem | uvcn0 40190 | A unit vector is nonzero. (Contributed by Steven Nguyen, 16-Jul-2023.) |
⊢ 𝑈 = (𝑅 unitVec 𝐼) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 0 = (0g‘𝑌) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) ≠ 0 ) | ||
Theorem | pwselbasr 40191 | The reverse direction of pwselbasb 17116: a function between the index and base set of a structure is an element of the structure power. (Contributed by SN, 29-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) & ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑉) | ||
Theorem | pwspjmhmmgpd 40192* | The projection given by pwspjmhm 18383 is also a monoid homomorphism between the respective multiplicative groups. (Contributed by SN, 30-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑀 MndHom 𝑇)) | ||
Theorem | pwsexpg 40193 | Value of a group exponentiation in a structure power. Compare pwsmulg 18663. (Contributed by SN, 30-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ ∙ = (.g‘𝑀) & ⊢ · = (.g‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) | ||
Theorem | pwsgprod 40194* | Finite products in a power structure are taken componentwise. Compare pwsgsum 19498. (Contributed by SN, 30-Jul-2024.) |
⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑌) & ⊢ 𝑀 = (mulGrp‘𝑌) & ⊢ 𝑇 = (mulGrp‘𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝐽 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 1 ) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑇 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | ||
Theorem | evlsval3 40195* | Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑈) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑇 = (𝑆 ↑s (𝐾 ↑m 𝐼)) & ⊢ 𝑀 = (mulGrp‘𝑇) & ⊢ ↑ = (.g‘𝑀) & ⊢ · = (.r‘𝑇) & ⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) & ⊢ 𝐹 = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) & ⊢ 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) ⇒ ⊢ (𝜑 → 𝑄 = 𝐸) | ||
Theorem | evlsscaval 40196 | Polynomial evaluation builder for a scalar. Compare evl1scad 21411. Note that scalar multiplication by 𝑋 is the same as vector multiplication by (𝐴‘𝑋) by asclmul1 21000. (Contributed by SN, 27-Jul-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐴 = (algSc‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝑅) & ⊢ (𝜑 → 𝐿 ∈ (𝐾 ↑m 𝐼)) ⇒ ⊢ (𝜑 → ((𝐴‘𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝐴‘𝑋))‘𝐿) = 𝑋)) | ||
Theorem | evlsvarval 40197 | Polynomial evaluation builder for a variable. (Contributed by SN, 27-Jul-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑈) & ⊢ 𝑉 = (𝐼 mVar 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝑋 ∈ 𝐼) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) ⇒ ⊢ (𝜑 → ((𝑉‘𝑋) ∈ 𝐵 ∧ ((𝑄‘(𝑉‘𝑋))‘𝐴) = (𝐴‘𝑋))) | ||
Theorem | evlsbagval 40198* | Polynomial evaluation builder for a bag of variables. EDITORIAL: This theorem should stay in my mathbox until there's another use, since 0 and 1 using 𝑈 instead of 𝑆 is convenient for its sole use case mhphf 40208, but may not be convenient for other uses. (Contributed by SN, 29-Jul-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝑊 = (Base‘𝑃) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑀 = (mulGrp‘𝑆) & ⊢ ↑ = (.g‘𝑀) & ⊢ 0 = (0g‘𝑈) & ⊢ 1 = (1r‘𝑈) & ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} & ⊢ 𝐹 = (𝑠 ∈ 𝐷 ↦ if(𝑠 = 𝐵, 1 , 0 )) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) & ⊢ (𝜑 → 𝐵 ∈ 𝐷) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝑊 ∧ ((𝑄‘𝐹)‘𝐴) = (𝑀 Σg (𝑣 ∈ 𝐼 ↦ ((𝐵‘𝑣) ↑ (𝐴‘𝑣)))))) | ||
Theorem | evlsexpval 40199 | Polynomial evaluation builder for exponentiation. (Contributed by SN, 27-Jul-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) & ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) & ⊢ ∙ = (.g‘(mulGrp‘𝑃)) & ⊢ ↑ = (.g‘(mulGrp‘𝑆)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑁 ∙ 𝑀) ∈ 𝐵 ∧ ((𝑄‘(𝑁 ∙ 𝑀))‘𝐴) = (𝑁 ↑ 𝑉))) | ||
Theorem | evlsaddval 40200 | Polynomial evaluation builder for addition. (Contributed by SN, 27-Jul-2024.) |
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) & ⊢ 𝑃 = (𝐼 mPoly 𝑈) & ⊢ 𝑈 = (𝑆 ↾s 𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) & ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) & ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) & ⊢ ✚ = (+g‘𝑃) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |