MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snjust Structured version   Visualization version   GIF version

Theorem snjust 4557
Description: Soundness justification theorem for df-sn 4559. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
snjust {𝑥𝑥 = 𝐴} = {𝑦𝑦 = 𝐴}
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴

Proof of Theorem snjust
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2742 . . 3 (𝑥 = 𝑧 → (𝑥 = 𝐴𝑧 = 𝐴))
21cbvabv 2812 . 2 {𝑥𝑥 = 𝐴} = {𝑧𝑧 = 𝐴}
3 eqeq1 2742 . . 3 (𝑧 = 𝑦 → (𝑧 = 𝐴𝑦 = 𝐴))
43cbvabv 2812 . 2 {𝑧𝑧 = 𝐴} = {𝑦𝑦 = 𝐴}
52, 4eqtri 2766 1 {𝑥𝑥 = 𝐴} = {𝑦𝑦 = 𝐴}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator