![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2806 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2152 and ax-13 2369. (Revised by Steven Nguyen, 4-Dec-2022.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvsbv 2357 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
3 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
4 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
5 | 2, 3, 4 | 3bitr4i 302 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
6 | 5 | eqriv 2727 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2065 ∈ wcel 2104 {cab 2707 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 |
This theorem is referenced by: cbvrabv 3440 cbvsbcvw 3813 difjust 3951 unjust 3953 injust 3955 uniiunlem 4085 dfif3 4543 pwjust 4604 snjust 4628 intab 4983 intabs 5343 iotajust 6495 cbviotavw 6504 frrlem1 8275 wfrlem1OLD 8312 fsetprcnex 8860 sbth 9097 sbthfi 9206 cardprc 9979 iunfictbso 10113 aceq3lem 10119 isf33lem 10365 axdc3 10453 axdclem 10518 axdc 10520 genpv 10998 ltexpri 11042 recexpr 11050 supsr 11111 hashf1lem2 14423 cvbtrcl 14945 mertens 15838 4sq 16903 symgval 19279 nosupcbv 27439 nosupdm 27441 noinfcbv 27454 noinfdm 27456 addsval2 27683 addscut 27698 addsunif 27722 addsasslem1 27723 addsasslem2 27724 mulsval2lem 27803 precsexlemcbv 27889 isuhgr 28585 isushgr 28586 isupgr 28609 isumgr 28620 isuspgr 28677 isusgr 28678 isconngr 29707 isconngr1 29708 dispcmp 33135 eulerpart 33677 ballotlemfmpn 33789 bnj66 34167 bnj1234 34320 subfacp1lem6 34472 subfacp1 34473 dfon2lem3 35059 dfon2lem7 35063 bj-gabeqis 36123 f1omptsn 36523 rdgssun 36564 ismblfin 36834 glbconxN 38554 sticksstones15 41285 eldioph3 41808 diophrex 41817 cbvcllem 42664 ssfiunibd 44319 aiotajust 46092 |
Copyright terms: Public domain | W3C validator |