Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2813 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2153 and ax-13 2371. (Revised by Steven Nguyen, 4-Dec-2022.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2vv 2099 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
2 | cbvabv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbievw 2094 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
4 | 3 | sbbii 2078 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
5 | 1, 4 | bitr3i 276 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
6 | df-clab 2715 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
7 | df-clab 2715 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
8 | 5, 6, 7 | 3bitr4i 302 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
9 | 8 | eqriv 2734 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 [wsb 2066 ∈ wcel 2105 {cab 2714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 |
This theorem is referenced by: cbvrabv 3414 cbvsbcvw 3761 difjust 3899 unjust 3901 injust 3903 uniiunlem 4030 dfif3 4485 pwjust 4546 snjust 4570 intab 4922 intabs 5281 iotajust 6417 cbviotavw 6426 frrlem1 8151 wfrlem1OLD 8188 fsetprcnex 8700 sbth 8937 sbthfi 9046 cardprc 9816 iunfictbso 9950 aceq3lem 9956 isf33lem 10202 axdc3 10290 axdclem 10355 axdc 10357 genpv 10835 ltexpri 10879 recexpr 10887 supsr 10948 hashf1lem2 14249 cvbtrcl 14782 mertens 15677 4sq 16742 symgval 19052 isuhgr 27566 isushgr 27567 isupgr 27590 isumgr 27601 isuspgr 27658 isusgr 27659 isconngr 28689 isconngr1 28690 dispcmp 31949 eulerpart 32489 ballotlemfmpn 32601 bnj66 32979 bnj1234 33132 subfacp1lem6 33286 subfacp1 33287 dfon2lem3 33892 dfon2lem7 33896 nosupcbv 33979 nosupdm 33981 noinfcbv 33994 noinfdm 33996 bj-gabeqis 35199 f1omptsn 35580 rdgssun 35621 ismblfin 35890 glbconxN 37613 sticksstones15 40341 eldioph3 40804 diophrex 40813 cbvcllem 41451 ssfiunibd 43097 aiotajust 44841 |
Copyright terms: Public domain | W3C validator |