| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2803 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2160 and ax-13 2372. (Revised by Steven Nguyen, 4-Dec-2022.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvsbv 2103 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 3 | df-clab 2710 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 4 | df-clab 2710 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 6 | 5 | eqriv 2728 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 [wsb 2067 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 |
| This theorem is referenced by: cbvrabv 3405 cbvsbcvw 3770 difjust 3899 unjust 3901 injust 3903 uniiunlem 4034 dfif3 4487 pwjust 4548 snjust 4572 intab 4926 intabs 5285 iotajust 6436 cbviotavw 6445 frrlem1 8216 fsetprcnex 8786 sbth 9010 sbthfi 9108 cardprc 9873 iunfictbso 10005 aceq3lem 10011 isf33lem 10257 axdc3 10345 axdclem 10410 axdc 10412 genpv 10890 ltexpri 10934 recexpr 10942 supsr 11003 hashf1lem2 14363 cvbtrcl 14899 mertens 15793 4sq 16876 symgval 19283 nosupcbv 27641 nosupdm 27643 noinfcbv 27656 noinfdm 27658 addsval2 27906 addscut 27921 addsunif 27945 addsasslem1 27946 addsasslem2 27947 mulsval2lem 28049 mulsunif2 28109 precsexlemcbv 28144 isuhgr 29038 isushgr 29039 isupgr 29062 isumgr 29073 isuspgr 29130 isusgr 29131 isconngr 30169 isconngr1 30170 dispcmp 33872 eulerpart 34395 ballotlemfmpn 34508 bnj66 34872 bnj1234 35025 setinds2regs 35129 tz9.1regs 35130 subfacp1lem6 35229 subfacp1 35230 dfon2lem3 35827 dfon2lem7 35831 cbvsbcvw2 36274 cbvixpvw2 36289 bj-gabeqis 36982 f1omptsn 37381 rdgssun 37422 ismblfin 37711 glbconxN 39487 sticksstones15 42264 eldioph3 42869 diophrex 42878 cbvcllem 43712 cbvrabv2w 45235 ssfiunibd 45420 aiotajust 47194 |
| Copyright terms: Public domain | W3C validator |