Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2815 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2156 and ax-13 2372. (Revised by Steven Nguyen, 4-Dec-2022.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2vv 2102 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
2 | cbvabv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbievw 2097 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
4 | 3 | sbbii 2080 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
5 | 1, 4 | bitr3i 276 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
6 | df-clab 2716 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
7 | df-clab 2716 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
8 | 5, 6, 7 | 3bitr4i 302 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
9 | 8 | eqriv 2735 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2068 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 |
This theorem is referenced by: cbvrabv 3416 cbvsbcvw 3746 difjust 3885 unjust 3887 injust 3889 uniiunlem 4015 dfif3 4470 pwjust 4531 snjust 4557 intab 4906 intabs 5261 iotajust 6375 cbviotavw 6384 frrlem1 8073 wfrlem1OLD 8110 fsetprcnex 8608 sbth 8833 sbthfi 8942 cardprc 9669 iunfictbso 9801 aceq3lem 9807 isf33lem 10053 axdc3 10141 axdclem 10206 axdc 10208 genpv 10686 ltexpri 10730 recexpr 10738 supsr 10799 hashf1lem2 14098 cvbtrcl 14631 mertens 15526 4sq 16593 symgval 18891 isuhgr 27333 isushgr 27334 isupgr 27357 isumgr 27368 isuspgr 27425 isusgr 27426 isconngr 28454 isconngr1 28455 dispcmp 31711 eulerpart 32249 ballotlemfmpn 32361 bnj66 32740 bnj1234 32893 subfacp1lem6 33047 subfacp1 33048 dfon2lem3 33667 dfon2lem7 33671 nosupcbv 33832 nosupdm 33834 noinfcbv 33847 noinfdm 33849 bj-gabeqis 35053 f1omptsn 35435 rdgssun 35476 ismblfin 35745 glbconxN 37319 sticksstones15 40045 eldioph3 40504 diophrex 40513 cbvcllem 41106 ssfiunibd 42738 aiotajust 44463 |
Copyright terms: Public domain | W3C validator |