| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2801 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2158 and ax-13 2370. (Revised by Steven Nguyen, 4-Dec-2022.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvsbv 2101 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 3 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 4 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 6 | 5 | eqriv 2726 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 |
| This theorem is referenced by: cbvrabv 3413 cbvsbcvw 3784 difjust 3913 unjust 3915 injust 3917 uniiunlem 4046 dfif3 4499 pwjust 4560 snjust 4584 intab 4938 intabs 5299 iotajust 6451 cbviotavw 6460 frrlem1 8242 fsetprcnex 8812 sbth 9038 sbthfi 9140 cardprc 9909 iunfictbso 10043 aceq3lem 10049 isf33lem 10295 axdc3 10383 axdclem 10448 axdc 10450 genpv 10928 ltexpri 10972 recexpr 10980 supsr 11041 hashf1lem2 14397 cvbtrcl 14934 mertens 15828 4sq 16911 symgval 19285 nosupcbv 27647 nosupdm 27649 noinfcbv 27662 noinfdm 27664 addsval2 27910 addscut 27925 addsunif 27949 addsasslem1 27950 addsasslem2 27951 mulsval2lem 28053 mulsunif2 28113 precsexlemcbv 28148 isuhgr 29040 isushgr 29041 isupgr 29064 isumgr 29075 isuspgr 29132 isusgr 29133 isconngr 30168 isconngr1 30169 dispcmp 33842 eulerpart 34366 ballotlemfmpn 34479 bnj66 34843 bnj1234 34996 subfacp1lem6 35165 subfacp1 35166 dfon2lem3 35766 dfon2lem7 35770 cbvsbcvw2 36211 cbvixpvw2 36226 bj-gabeqis 36919 f1omptsn 37318 rdgssun 37359 ismblfin 37648 glbconxN 39365 sticksstones15 42142 eldioph3 42747 diophrex 42756 cbvcllem 43591 cbvrabv2w 45115 ssfiunibd 45300 aiotajust 47078 |
| Copyright terms: Public domain | W3C validator |