| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2802 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2158 and ax-13 2371. (Revised by Steven Nguyen, 4-Dec-2022.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvsbv 2101 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 3 | df-clab 2709 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 4 | df-clab 2709 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 6 | 5 | eqriv 2727 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 |
| This theorem is referenced by: cbvrabv 3419 cbvsbcvw 3790 difjust 3919 unjust 3921 injust 3923 uniiunlem 4053 dfif3 4506 pwjust 4567 snjust 4591 intab 4945 intabs 5307 iotajust 6466 cbviotavw 6475 frrlem1 8268 fsetprcnex 8838 sbth 9067 sbthfi 9169 cardprc 9940 iunfictbso 10074 aceq3lem 10080 isf33lem 10326 axdc3 10414 axdclem 10479 axdc 10481 genpv 10959 ltexpri 11003 recexpr 11011 supsr 11072 hashf1lem2 14428 cvbtrcl 14965 mertens 15859 4sq 16942 symgval 19308 nosupcbv 27621 nosupdm 27623 noinfcbv 27636 noinfdm 27638 addsval2 27877 addscut 27892 addsunif 27916 addsasslem1 27917 addsasslem2 27918 mulsval2lem 28020 mulsunif2 28080 precsexlemcbv 28115 isuhgr 28994 isushgr 28995 isupgr 29018 isumgr 29029 isuspgr 29086 isusgr 29087 isconngr 30125 isconngr1 30126 dispcmp 33856 eulerpart 34380 ballotlemfmpn 34493 bnj66 34857 bnj1234 35010 subfacp1lem6 35179 subfacp1 35180 dfon2lem3 35780 dfon2lem7 35784 cbvsbcvw2 36225 cbvixpvw2 36240 bj-gabeqis 36933 f1omptsn 37332 rdgssun 37373 ismblfin 37662 glbconxN 39379 sticksstones15 42156 eldioph3 42761 diophrex 42770 cbvcllem 43605 cbvrabv2w 45129 ssfiunibd 45314 aiotajust 47089 |
| Copyright terms: Public domain | W3C validator |