![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2809 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2155 and ax-13 2372. (Revised by Steven Nguyen, 4-Dec-2022.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvsbv 2360 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
3 | df-clab 2711 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
4 | df-clab 2711 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
6 | 5 | eqriv 2730 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 [wsb 2068 ∈ wcel 2107 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 |
This theorem is referenced by: cbvrabv 3443 cbvsbcvw 3813 difjust 3951 unjust 3953 injust 3955 uniiunlem 4085 dfif3 4543 pwjust 4604 snjust 4628 intab 4983 intabs 5343 iotajust 6495 cbviotavw 6504 frrlem1 8271 wfrlem1OLD 8308 fsetprcnex 8856 sbth 9093 sbthfi 9202 cardprc 9975 iunfictbso 10109 aceq3lem 10115 isf33lem 10361 axdc3 10449 axdclem 10514 axdc 10516 genpv 10994 ltexpri 11038 recexpr 11046 supsr 11107 hashf1lem2 14417 cvbtrcl 14939 mertens 15832 4sq 16897 symgval 19236 nosupcbv 27205 nosupdm 27207 noinfcbv 27220 noinfdm 27222 addsval2 27449 addscut 27464 addsunif 27488 addsasslem1 27489 addsasslem2 27490 mulsval2lem 27569 precsexlemcbv 27655 isuhgr 28351 isushgr 28352 isupgr 28375 isumgr 28386 isuspgr 28443 isusgr 28444 isconngr 29473 isconngr1 29474 dispcmp 32870 eulerpart 33412 ballotlemfmpn 33524 bnj66 33902 bnj1234 34055 subfacp1lem6 34207 subfacp1 34208 dfon2lem3 34788 dfon2lem7 34792 bj-gabeqis 35866 f1omptsn 36266 rdgssun 36307 ismblfin 36577 glbconxN 38297 sticksstones15 41025 eldioph3 41552 diophrex 41561 cbvcllem 42408 ssfiunibd 44067 aiotajust 45840 |
Copyright terms: Public domain | W3C validator |