![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2817 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2158 and ax-13 2380. (Revised by Steven Nguyen, 4-Dec-2022.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvsbv 2100 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
3 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
4 | df-clab 2718 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
6 | 5 | eqriv 2737 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 [wsb 2064 ∈ wcel 2108 {cab 2717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 |
This theorem is referenced by: cbvrabv 3454 cbvsbcvw 3839 difjust 3978 unjust 3980 injust 3982 uniiunlem 4110 dfif3 4562 pwjust 4623 snjust 4647 intab 5002 intabs 5367 iotajust 6524 cbviotavw 6533 frrlem1 8327 wfrlem1OLD 8364 fsetprcnex 8920 sbth 9159 sbthfi 9265 cardprc 10049 iunfictbso 10183 aceq3lem 10189 isf33lem 10435 axdc3 10523 axdclem 10588 axdc 10590 genpv 11068 ltexpri 11112 recexpr 11120 supsr 11181 hashf1lem2 14505 cvbtrcl 15041 mertens 15934 4sq 17011 symgval 19412 nosupcbv 27765 nosupdm 27767 noinfcbv 27780 noinfdm 27782 addsval2 28014 addscut 28029 addsunif 28053 addsasslem1 28054 addsasslem2 28055 mulsval2lem 28154 mulsunif2 28214 precsexlemcbv 28248 isuhgr 29095 isushgr 29096 isupgr 29119 isumgr 29130 isuspgr 29187 isusgr 29188 isconngr 30221 isconngr1 30222 dispcmp 33805 eulerpart 34347 ballotlemfmpn 34459 bnj66 34836 bnj1234 34989 subfacp1lem6 35153 subfacp1 35154 dfon2lem3 35749 dfon2lem7 35753 cbvsbcvw2 36196 cbvixpvw2 36211 bj-gabeqis 36904 f1omptsn 37303 rdgssun 37344 ismblfin 37621 glbconxN 39335 sticksstones15 42118 eldioph3 42722 diophrex 42731 cbvcllem 43571 cbvrabv2w 45030 ssfiunibd 45224 aiotajust 46999 |
Copyright terms: Public domain | W3C validator |