| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2801 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2158 and ax-13 2370. (Revised by Steven Nguyen, 4-Dec-2022.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvsbv 2101 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 3 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 4 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 6 | 5 | eqriv 2726 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 |
| This theorem is referenced by: cbvrabv 3405 cbvsbcvw 3776 difjust 3905 unjust 3907 injust 3909 uniiunlem 4038 dfif3 4491 pwjust 4552 snjust 4576 intab 4928 intabs 5288 iotajust 6437 cbviotavw 6446 frrlem1 8219 fsetprcnex 8789 sbth 9014 sbthfi 9113 cardprc 9876 iunfictbso 10008 aceq3lem 10014 isf33lem 10260 axdc3 10348 axdclem 10413 axdc 10415 genpv 10893 ltexpri 10937 recexpr 10945 supsr 11006 hashf1lem2 14363 cvbtrcl 14899 mertens 15793 4sq 16876 symgval 19250 nosupcbv 27612 nosupdm 27614 noinfcbv 27627 noinfdm 27629 addsval2 27875 addscut 27890 addsunif 27914 addsasslem1 27915 addsasslem2 27916 mulsval2lem 28018 mulsunif2 28078 precsexlemcbv 28113 isuhgr 29005 isushgr 29006 isupgr 29029 isumgr 29040 isuspgr 29097 isusgr 29098 isconngr 30133 isconngr1 30134 dispcmp 33832 eulerpart 34356 ballotlemfmpn 34469 bnj66 34833 bnj1234 34986 setinds2regs 35072 tz9.1regs 35073 subfacp1lem6 35168 subfacp1 35169 dfon2lem3 35769 dfon2lem7 35773 cbvsbcvw2 36214 cbvixpvw2 36229 bj-gabeqis 36922 f1omptsn 37321 rdgssun 37362 ismblfin 37651 glbconxN 39367 sticksstones15 42144 eldioph3 42749 diophrex 42758 cbvcllem 43592 cbvrabv2w 45116 ssfiunibd 45301 aiotajust 47078 |
| Copyright terms: Public domain | W3C validator |