| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2801 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2158 and ax-13 2370. (Revised by Steven Nguyen, 4-Dec-2022.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvsbv 2101 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 3 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 4 | df-clab 2708 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 6 | 5 | eqriv 2726 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2065 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 |
| This theorem is referenced by: cbvrabv 3416 cbvsbcvw 3787 difjust 3916 unjust 3918 injust 3920 uniiunlem 4050 dfif3 4503 pwjust 4564 snjust 4588 intab 4942 intabs 5304 iotajust 6463 cbviotavw 6472 frrlem1 8265 fsetprcnex 8835 sbth 9061 sbthfi 9163 cardprc 9933 iunfictbso 10067 aceq3lem 10073 isf33lem 10319 axdc3 10407 axdclem 10472 axdc 10474 genpv 10952 ltexpri 10996 recexpr 11004 supsr 11065 hashf1lem2 14421 cvbtrcl 14958 mertens 15852 4sq 16935 symgval 19301 nosupcbv 27614 nosupdm 27616 noinfcbv 27629 noinfdm 27631 addsval2 27870 addscut 27885 addsunif 27909 addsasslem1 27910 addsasslem2 27911 mulsval2lem 28013 mulsunif2 28073 precsexlemcbv 28108 isuhgr 28987 isushgr 28988 isupgr 29011 isumgr 29022 isuspgr 29079 isusgr 29080 isconngr 30118 isconngr1 30119 dispcmp 33849 eulerpart 34373 ballotlemfmpn 34486 bnj66 34850 bnj1234 35003 subfacp1lem6 35172 subfacp1 35173 dfon2lem3 35773 dfon2lem7 35777 cbvsbcvw2 36218 cbvixpvw2 36233 bj-gabeqis 36926 f1omptsn 37325 rdgssun 37366 ismblfin 37655 glbconxN 39372 sticksstones15 42149 eldioph3 42754 diophrex 42763 cbvcllem 43598 cbvrabv2w 45122 ssfiunibd 45307 aiotajust 47085 |
| Copyright terms: Public domain | W3C validator |