Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2814 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2154 and ax-13 2372. (Revised by Steven Nguyen, 4-Dec-2022.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2vv 2100 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) | |
2 | cbvabv.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbievw 2095 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
4 | 3 | sbbii 2079 | . . . 4 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
5 | 1, 4 | bitr3i 276 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
6 | df-clab 2716 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
7 | df-clab 2716 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
9 | 8 | eqriv 2735 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 [wsb 2067 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 |
This theorem is referenced by: cbvrabv 3426 cbvsbcvw 3751 difjust 3889 unjust 3891 injust 3893 uniiunlem 4019 dfif3 4473 pwjust 4534 snjust 4560 intab 4909 intabs 5266 iotajust 6390 cbviotavw 6399 frrlem1 8102 wfrlem1OLD 8139 fsetprcnex 8650 sbth 8880 sbthfi 8985 cardprc 9738 iunfictbso 9870 aceq3lem 9876 isf33lem 10122 axdc3 10210 axdclem 10275 axdc 10277 genpv 10755 ltexpri 10799 recexpr 10807 supsr 10868 hashf1lem2 14170 cvbtrcl 14703 mertens 15598 4sq 16665 symgval 18976 isuhgr 27430 isushgr 27431 isupgr 27454 isumgr 27465 isuspgr 27522 isusgr 27523 isconngr 28553 isconngr1 28554 dispcmp 31809 eulerpart 32349 ballotlemfmpn 32461 bnj66 32840 bnj1234 32993 subfacp1lem6 33147 subfacp1 33148 dfon2lem3 33761 dfon2lem7 33765 nosupcbv 33905 nosupdm 33907 noinfcbv 33920 noinfdm 33922 bj-gabeqis 35126 f1omptsn 35508 rdgssun 35549 ismblfin 35818 glbconxN 37392 sticksstones15 40117 eldioph3 40588 diophrex 40597 cbvcllem 41217 ssfiunibd 42848 aiotajust 44576 |
Copyright terms: Public domain | W3C validator |