| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2807 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2157 and ax-13 2376. (Revised by Steven Nguyen, 4-Dec-2022.) |
| Ref | Expression |
|---|---|
| cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | cbvsbv 2100 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
| 3 | df-clab 2714 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
| 4 | df-clab 2714 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
| 6 | 5 | eqriv 2732 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 [wsb 2064 ∈ wcel 2108 {cab 2713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 |
| This theorem is referenced by: cbvrabv 3426 cbvsbcvw 3799 difjust 3928 unjust 3930 injust 3932 uniiunlem 4062 dfif3 4515 pwjust 4576 snjust 4600 intab 4954 intabs 5319 iotajust 6483 cbviotavw 6492 frrlem1 8285 wfrlem1OLD 8322 fsetprcnex 8876 sbth 9107 sbthfi 9213 cardprc 9994 iunfictbso 10128 aceq3lem 10134 isf33lem 10380 axdc3 10468 axdclem 10533 axdc 10535 genpv 11013 ltexpri 11057 recexpr 11065 supsr 11126 hashf1lem2 14474 cvbtrcl 15011 mertens 15902 4sq 16984 symgval 19352 nosupcbv 27666 nosupdm 27668 noinfcbv 27681 noinfdm 27683 addsval2 27922 addscut 27937 addsunif 27961 addsasslem1 27962 addsasslem2 27963 mulsval2lem 28065 mulsunif2 28125 precsexlemcbv 28160 isuhgr 29039 isushgr 29040 isupgr 29063 isumgr 29074 isuspgr 29131 isusgr 29132 isconngr 30170 isconngr1 30171 dispcmp 33890 eulerpart 34414 ballotlemfmpn 34527 bnj66 34891 bnj1234 35044 subfacp1lem6 35207 subfacp1 35208 dfon2lem3 35803 dfon2lem7 35807 cbvsbcvw2 36248 cbvixpvw2 36263 bj-gabeqis 36956 f1omptsn 37355 rdgssun 37396 ismblfin 37685 glbconxN 39397 sticksstones15 42174 eldioph3 42789 diophrex 42798 cbvcllem 43633 cbvrabv2w 45152 ssfiunibd 45338 aiotajust 47113 |
| Copyright terms: Public domain | W3C validator |