![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvabv | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbvab 2811 with disjoint variable conditions requiring fewer axioms. (Contributed by NM, 26-May-1999.) Require 𝑥, 𝑦 be disjoint to avoid ax-11 2154 and ax-13 2374. (Revised by Steven Nguyen, 4-Dec-2022.) |
Ref | Expression |
---|---|
cbvabv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvabv | ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabv.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | cbvsbv 2097 | . . 3 ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
3 | df-clab 2712 | . . 3 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ [𝑧 / 𝑥]𝜑) | |
4 | df-clab 2712 | . . 3 ⊢ (𝑧 ∈ {𝑦 ∣ 𝜓} ↔ [𝑧 / 𝑦]𝜓) | |
5 | 2, 3, 4 | 3bitr4i 303 | . 2 ⊢ (𝑧 ∈ {𝑥 ∣ 𝜑} ↔ 𝑧 ∈ {𝑦 ∣ 𝜓}) |
6 | 5 | eqriv 2731 | 1 ⊢ {𝑥 ∣ 𝜑} = {𝑦 ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 [wsb 2061 ∈ wcel 2105 {cab 2711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 |
This theorem is referenced by: cbvrabv 3443 cbvsbcvw 3825 difjust 3964 unjust 3966 injust 3968 uniiunlem 4096 dfif3 4544 pwjust 4605 snjust 4629 intab 4982 intabs 5354 iotajust 6514 cbviotavw 6523 frrlem1 8309 wfrlem1OLD 8346 fsetprcnex 8900 sbth 9131 sbthfi 9236 cardprc 10017 iunfictbso 10151 aceq3lem 10157 isf33lem 10403 axdc3 10491 axdclem 10556 axdc 10558 genpv 11036 ltexpri 11080 recexpr 11088 supsr 11149 hashf1lem2 14491 cvbtrcl 15027 mertens 15918 4sq 16997 symgval 19402 nosupcbv 27761 nosupdm 27763 noinfcbv 27776 noinfdm 27778 addsval2 28010 addscut 28025 addsunif 28049 addsasslem1 28050 addsasslem2 28051 mulsval2lem 28150 mulsunif2 28210 precsexlemcbv 28244 isuhgr 29091 isushgr 29092 isupgr 29115 isumgr 29126 isuspgr 29183 isusgr 29184 isconngr 30217 isconngr1 30218 dispcmp 33819 eulerpart 34363 ballotlemfmpn 34475 bnj66 34852 bnj1234 35005 subfacp1lem6 35169 subfacp1 35170 dfon2lem3 35766 dfon2lem7 35770 cbvsbcvw2 36212 cbvixpvw2 36227 bj-gabeqis 36920 f1omptsn 37319 rdgssun 37360 ismblfin 37647 glbconxN 39360 sticksstones15 42142 eldioph3 42753 diophrex 42762 cbvcllem 43598 cbvrabv2w 45067 ssfiunibd 45259 aiotajust 47033 |
Copyright terms: Public domain | W3C validator |