| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4697. For an alternate definition see dfsn2 4619. (Contributed by NM, 21-Jun-1993.) | 
| Ref | Expression | 
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 4606 | . 2 class {𝐴} | 
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1538 | . . . 4 class 𝑥 | 
| 5 | 4, 1 | wceq 1539 | . . 3 wff 𝑥 = 𝐴 | 
| 6 | 5, 3 | cab 2712 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} | 
| 7 | 2, 6 | wceq 1539 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: sneq 4616 elsng 4620 absn 4625 dfsn2ALT 4627 rabsssn 4648 csbsng 4688 pw0 4792 iunidOLD 5041 uniabio 6507 iotaval 6511 dfimafn2 6951 suppvalbr 8170 snec 8801 fset0 8875 0map0sn0 8906 infmap2 10238 cf0 10272 cflecard 10274 brdom7disj 10552 brdom6disj 10553 vdwlem6 17005 hashbc0 17024 symgbas0 19373 pzriprnglem10 21462 pzriprnglem11 21463 psrbagsn 22034 ptcmplem2 24006 snclseqg 24069 1p1e2s 28335 nohalf 28342 halfcut 28351 nmoo0 30737 nmop0 31932 nmfn0 31933 disjabrex 32522 disjabrexf 32523 pstmfval 33829 hasheuni 34020 derang0 35108 dfiota3 35858 bj-nuliotaALT 36993 poimirlem28 37589 lineset 39674 abbi1sn 42196 absnw 42626 frege54cor1c 43866 iotain 44369 csbsngVD 44846 dfaimafn2 47112 dfatsnafv2 47198 rnfdmpr 47227 stgr1 47862 | 
| Copyright terms: Public domain | W3C validator |