| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4677. For an alternate definition see dfsn2 4598. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 4585 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1540 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2707 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1540 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: sneq 4595 elsng 4599 absn 4605 dfsn2ALT 4607 rabsssn 4628 csbsng 4668 pw0 4772 iunidOLD 5020 uniabio 6466 iotaval 6470 dfimafn2 6906 suppvalbr 8120 snec 8728 fset0 8804 0map0sn0 8835 infmap2 10146 cf0 10180 cflecard 10182 brdom7disj 10460 brdom6disj 10461 vdwlem6 16933 hashbc0 16952 symgbas0 19303 pzriprnglem10 21432 pzriprnglem11 21433 psrbagsn 22003 ptcmplem2 23973 snclseqg 24036 1p1e2s 28343 twocut 28350 halfcut 28381 nmoo0 30770 nmop0 31965 nmfn0 31966 disjabrex 32561 disjabrexf 32562 pstmfval 33879 hasheuni 34068 derang0 35149 dfiota3 35904 bj-nuliotaALT 37039 poimirlem28 37635 dmcnvep 38354 lineset 39725 abbi1sn 42204 absnw 42659 frege54cor1c 43897 iotain 44399 csbsngVD 44875 dfaimafn2 47160 dfatsnafv2 47246 rnfdmpr 47275 stgr1 47953 |
| Copyright terms: Public domain | W3C validator |