| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4681. For an alternate definition see dfsn2 4602. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 4589 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1540 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2707 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1540 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: sneq 4599 elsng 4603 absn 4609 dfsn2ALT 4611 rabsssn 4632 csbsng 4672 pw0 4776 iunidOLD 5025 uniabio 6478 iotaval 6482 dfimafn2 6924 suppvalbr 8143 snec 8751 fset0 8827 0map0sn0 8858 infmap2 10170 cf0 10204 cflecard 10206 brdom7disj 10484 brdom6disj 10485 vdwlem6 16957 hashbc0 16976 symgbas0 19319 pzriprnglem10 21400 pzriprnglem11 21401 psrbagsn 21970 ptcmplem2 23940 snclseqg 24003 1p1e2s 28302 twocut 28309 halfcut 28333 nmoo0 30720 nmop0 31915 nmfn0 31916 disjabrex 32511 disjabrexf 32512 pstmfval 33886 hasheuni 34075 derang0 35156 dfiota3 35911 bj-nuliotaALT 37046 poimirlem28 37642 dmcnvep 38361 lineset 39732 abbi1sn 42211 absnw 42666 frege54cor1c 43904 iotain 44406 csbsngVD 44882 dfaimafn2 47167 dfatsnafv2 47253 rnfdmpr 47282 stgr1 47960 |
| Copyright terms: Public domain | W3C validator |