| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4677. For an alternate definition see dfsn2 4598. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 4585 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1540 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2707 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1540 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: sneq 4595 elsng 4599 absn 4605 dfsn2ALT 4607 rabsssn 4628 csbsng 4668 pw0 4772 iunidOLD 5020 uniabio 6466 iotaval 6470 dfimafn2 6906 suppvalbr 8120 snec 8728 fset0 8804 0map0sn0 8835 infmap2 10146 cf0 10180 cflecard 10182 brdom7disj 10460 brdom6disj 10461 vdwlem6 16933 hashbc0 16952 symgbas0 19295 pzriprnglem10 21376 pzriprnglem11 21377 psrbagsn 21946 ptcmplem2 23916 snclseqg 23979 1p1e2s 28278 twocut 28285 halfcut 28309 nmoo0 30693 nmop0 31888 nmfn0 31889 disjabrex 32484 disjabrexf 32485 pstmfval 33859 hasheuni 34048 derang0 35129 dfiota3 35884 bj-nuliotaALT 37019 poimirlem28 37615 dmcnvep 38334 lineset 39705 abbi1sn 42184 absnw 42639 frege54cor1c 43877 iotain 44379 csbsngVD 44855 dfaimafn2 47140 dfatsnafv2 47226 rnfdmpr 47255 stgr1 47933 |
| Copyright terms: Public domain | W3C validator |