![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4722. For an alternate definition see dfsn2 4644. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 4631 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1536 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1537 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2712 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1537 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 4641 elsng 4645 absn 4650 dfsn2ALT 4652 rabsssn 4673 csbsng 4713 pw0 4817 iunidOLD 5066 uniabio 6530 iotaval 6534 dfimafn2 6972 suppvalbr 8188 snec 8819 fset0 8893 0map0sn0 8924 infmap2 10255 cf0 10289 cflecard 10291 brdom7disj 10569 brdom6disj 10570 vdwlem6 17020 hashbc0 17039 symgbas0 19421 pzriprnglem10 21519 pzriprnglem11 21520 psrbagsn 22105 ptcmplem2 24077 snclseqg 24140 1p1e2s 28415 nohalf 28422 halfcut 28431 nmoo0 30820 nmop0 32015 nmfn0 32016 disjabrex 32602 disjabrexf 32603 pstmfval 33857 hasheuni 34066 derang0 35154 dfiota3 35905 bj-nuliotaALT 37041 poimirlem28 37635 lineset 39721 abbi1sn 42241 absnw 42665 frege54cor1c 43905 iotain 44413 csbsngVD 44891 dfaimafn2 47116 dfatsnafv2 47202 rnfdmpr 47231 stgr1 47864 |
Copyright terms: Public domain | W3C validator |