![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4742. For an alternate definition see dfsn2 4661. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 4648 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1536 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1537 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2717 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1537 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 4658 elsng 4662 absn 4667 dfsn2ALT 4669 rabsssn 4690 csbsng 4733 pw0 4837 iunidOLD 5084 uniabio 6540 iotaval 6544 dfimafn2 6985 suppvalbr 8205 snec 8838 fset0 8912 0map0sn0 8943 infmap2 10286 cf0 10320 cflecard 10322 brdom7disj 10600 brdom6disj 10601 vdwlem6 17033 hashbc0 17052 symgbas0 19430 pzriprnglem10 21524 pzriprnglem11 21525 psrbagsn 22110 ptcmplem2 24082 snclseqg 24145 1p1e2s 28418 nohalf 28425 halfcut 28434 nmoo0 30823 nmop0 32018 nmfn0 32019 disjabrex 32604 disjabrexf 32605 pstmfval 33842 hasheuni 34049 derang0 35137 dfiota3 35887 bj-nuliotaALT 37024 poimirlem28 37608 lineset 39695 abbi1sn 42216 absnw 42633 frege54cor1c 43877 iotain 44386 csbsngVD 44864 dfaimafn2 47081 dfatsnafv2 47167 rnfdmpr 47196 |
Copyright terms: Public domain | W3C validator |