Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4650. For an alternate definition see dfsn2 4571. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 4558 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1542 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1543 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2716 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1543 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 4568 elsng 4572 absn 4576 dfsn2ALT 4578 rabsssn 4600 csbsng 4641 pw0 4742 iunid 4986 uniabio 6388 dfimafn2 6812 fnsnfvOLD 6827 suppvalbr 7949 snec 8504 fset0 8577 0map0sn0 8608 infmap2 9880 cf0 9913 cflecard 9915 brdom7disj 10193 brdom6disj 10194 vdwlem6 16590 hashbc0 16609 symgbas0 18886 psrbagsn 21156 ptcmplem2 23087 snclseqg 23150 nmoo0 29029 nmop0 30224 nmfn0 30225 disjabrex 30797 disjabrexf 30798 pstmfval 31723 hasheuni 31928 derang0 33006 dfiota3 34127 bj-nuliotaALT 35131 poimirlem28 35711 lineset 37658 frege54cor1c 41385 iotain 41897 csbsngVD 42375 dfaimafn2 44518 dfatsnafv2 44604 rnfdmpr 44633 |
Copyright terms: Public domain | W3C validator |