| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4667. For an alternate definition see dfsn2 4586. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 4573 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1540 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1541 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2709 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1541 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: sneq 4583 elsng 4587 absn 4593 dfsn2ALT 4595 rabsssn 4618 csbsng 4658 pw0 4761 uniabio 6451 iotaval 6455 dfimafn2 6885 suppvalbr 8094 snec 8702 fset0 8778 0map0sn0 8809 infmap2 10108 cf0 10142 cflecard 10144 brdom7disj 10422 brdom6disj 10423 vdwlem6 16898 hashbc0 16917 symgbas0 19301 pzriprnglem10 21427 pzriprnglem11 21428 psrbagsn 21998 ptcmplem2 23968 snclseqg 24031 1p1e2s 28339 twocut 28346 halfcut 28378 pw2cut2 28382 nmoo0 30771 nmop0 31966 nmfn0 31967 disjabrex 32562 disjabrexf 32563 pstmfval 33909 hasheuni 34098 derang0 35213 dfiota3 35965 bj-nuliotaALT 37102 poimirlem28 37698 dmcnvep 38422 lineset 39847 abbi1sn 42326 absnw 42781 frege54cor1c 44018 iotain 44520 csbsngVD 44995 dfaimafn2 47276 dfatsnafv2 47362 rnfdmpr 47391 stgr1 48071 |
| Copyright terms: Public domain | W3C validator |