| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4689. For an alternate definition see dfsn2 4610. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 4597 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1540 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2708 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1540 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: sneq 4607 elsng 4611 absn 4617 dfsn2ALT 4619 rabsssn 4640 csbsng 4680 pw0 4784 iunidOLD 5033 uniabio 6486 iotaval 6490 dfimafn2 6931 suppvalbr 8152 snec 8757 fset0 8831 0map0sn0 8862 infmap2 10188 cf0 10222 cflecard 10224 brdom7disj 10502 brdom6disj 10503 vdwlem6 16963 hashbc0 16982 symgbas0 19325 pzriprnglem10 21406 pzriprnglem11 21407 psrbagsn 21976 ptcmplem2 23946 snclseqg 24009 1p1e2s 28309 twocut 28316 halfcut 28340 nmoo0 30727 nmop0 31922 nmfn0 31923 disjabrex 32518 disjabrexf 32519 pstmfval 33894 hasheuni 34083 derang0 35158 dfiota3 35908 bj-nuliotaALT 37043 poimirlem28 37639 lineset 39724 abbi1sn 42203 absnw 42638 frege54cor1c 43876 iotain 44378 csbsngVD 44854 dfaimafn2 47137 dfatsnafv2 47223 rnfdmpr 47252 stgr1 47915 |
| Copyright terms: Public domain | W3C validator |