| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version | ||
| Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4669. For an alternate definition see dfsn2 4590. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | csn 4577 | . 2 class {𝐴} |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | 4, 1 | wceq 1540 | . . 3 wff 𝑥 = 𝐴 |
| 6 | 5, 3 | cab 2707 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
| 7 | 2, 6 | wceq 1540 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
| Colors of variables: wff setvar class |
| This definition is referenced by: sneq 4587 elsng 4591 absn 4597 dfsn2ALT 4599 rabsssn 4620 csbsng 4660 pw0 4763 iunidOLD 5010 uniabio 6452 iotaval 6456 dfimafn2 6886 suppvalbr 8097 snec 8705 fset0 8781 0map0sn0 8812 infmap2 10111 cf0 10145 cflecard 10147 brdom7disj 10425 brdom6disj 10426 vdwlem6 16898 hashbc0 16917 symgbas0 19268 pzriprnglem10 21397 pzriprnglem11 21398 psrbagsn 21968 ptcmplem2 23938 snclseqg 24001 1p1e2s 28308 twocut 28315 halfcut 28346 nmoo0 30735 nmop0 31930 nmfn0 31931 disjabrex 32526 disjabrexf 32527 pstmfval 33869 hasheuni 34058 derang0 35152 dfiota3 35907 bj-nuliotaALT 37042 poimirlem28 37638 dmcnvep 38357 lineset 39727 abbi1sn 42206 absnw 42661 frege54cor1c 43898 iotain 44400 csbsngVD 44876 dfaimafn2 47160 dfatsnafv2 47246 rnfdmpr 47275 stgr1 47955 |
| Copyright terms: Public domain | W3C validator |