![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sn | Structured version Visualization version GIF version |
Description: Define the singleton of a class. Definition 7.1 of [Quine] p. 48. For convenience, it is well-defined for proper classes, i.e., those that are not elements of V, see snprc 4722. For an alternate definition see dfsn2 4642. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
df-sn | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | csn 4629 | . 2 class {𝐴} |
3 | vx | . . . . 5 setvar 𝑥 | |
4 | 3 | cv 1541 | . . . 4 class 𝑥 |
5 | 4, 1 | wceq 1542 | . . 3 wff 𝑥 = 𝐴 |
6 | 5, 3 | cab 2710 | . 2 class {𝑥 ∣ 𝑥 = 𝐴} |
7 | 2, 6 | wceq 1542 | 1 wff {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
Colors of variables: wff setvar class |
This definition is referenced by: sneq 4639 elsng 4643 absn 4647 dfsn2ALT 4649 rabsssn 4671 csbsng 4713 pw0 4816 iunidOLD 5065 uniabio 6511 iotaval 6515 dfimafn2 6956 fnsnfvOLD 6972 suppvalbr 8150 snec 8774 fset0 8848 0map0sn0 8879 infmap2 10213 cf0 10246 cflecard 10248 brdom7disj 10526 brdom6disj 10527 vdwlem6 16919 hashbc0 16938 symgbas0 19256 psrbagsn 21624 ptcmplem2 23557 snclseqg 23620 nmoo0 30044 nmop0 31239 nmfn0 31240 disjabrex 31813 disjabrexf 31814 pstmfval 32876 hasheuni 33083 derang0 34160 dfiota3 34895 bj-nuliotaALT 35939 poimirlem28 36516 lineset 38609 abbi1sn 41040 frege54cor1c 42666 iotain 43176 csbsngVD 43654 dfaimafn2 45874 dfatsnafv2 45960 rnfdmpr 45989 pzriprnglem10 46814 pzriprnglem11 46815 |
Copyright terms: Public domain | W3C validator |