![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwundif | Structured version Visualization version GIF version |
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) Remove use of ax-sep 5298, ax-nul 5305, ax-pr 5426 and shorten proof. (Revised by BJ, 14-Apr-2024.) |
Ref | Expression |
---|---|
pwundif | ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4171 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | 1 | sspwi 4613 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
3 | undif 4480 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 2, 3 | mpbi 229 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵) |
5 | uncom 4152 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) | |
6 | 4, 5 | eqtr3i 2760 | 1 ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3944 ∪ cun 3945 ⊆ wss 3947 𝒫 cpw 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-pw 4603 |
This theorem is referenced by: pwfilem 9179 pwfilemOLD 9348 |
Copyright terms: Public domain | W3C validator |