Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwundif | Structured version Visualization version GIF version |
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) Remove use of ax-sep 5218, ax-nul 5225, ax-pr 5347 and shorten proof. (Revised by BJ, 14-Apr-2024.) |
Ref | Expression |
---|---|
pwundif | ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4102 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | 1 | sspwi 4544 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
3 | undif 4412 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 2, 3 | mpbi 229 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵) |
5 | uncom 4083 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) | |
6 | 4, 5 | eqtr3i 2768 | 1 ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 |
This theorem is referenced by: pwfilem 8922 pwfilemOLD 9043 |
Copyright terms: Public domain | W3C validator |