| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwundif | Structured version Visualization version GIF version | ||
| Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) Remove use of ax-sep 5234, ax-nul 5244, ax-pr 5370 and shorten proof. (Revised by BJ, 14-Apr-2024.) |
| Ref | Expression |
|---|---|
| pwundif | ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4128 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 2 | 1 | sspwi 4562 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
| 3 | undif 4432 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵)) | |
| 4 | 2, 3 | mpbi 230 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵) |
| 5 | uncom 4108 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) | |
| 6 | 4, 5 | eqtr3i 2756 | 1 ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3899 ∪ cun 3900 ⊆ wss 3902 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-pw 4552 |
| This theorem is referenced by: pwfilem 9202 |
| Copyright terms: Public domain | W3C validator |