![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwundif | Structured version Visualization version GIF version |
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) |
Ref | Expression |
---|---|
pwundif | ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undif1 4266 | . 2 ⊢ ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) = (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) | |
2 | pwunss 5256 | . . . . 5 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) | |
3 | unss 4009 | . . . . 5 ⊢ ((𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) ↔ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 2, 3 | mpbir 223 | . . . 4 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ∧ 𝒫 𝐵 ⊆ 𝒫 (𝐴 ∪ 𝐵)) |
5 | 4 | simpli 478 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
6 | ssequn2 4008 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵)) | |
7 | 5, 6 | mpbi 222 | . 2 ⊢ (𝒫 (𝐴 ∪ 𝐵) ∪ 𝒫 𝐴) = 𝒫 (𝐴 ∪ 𝐵) |
8 | 1, 7 | eqtr2i 2802 | 1 ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 386 = wceq 1601 ∖ cdif 3788 ∪ cun 3789 ⊆ wss 3791 𝒫 cpw 4378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-pw 4380 |
This theorem is referenced by: pwfilem 8548 |
Copyright terms: Public domain | W3C validator |