![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwundif | Structured version Visualization version GIF version |
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) Remove use of ax-sep 5317, ax-nul 5324, ax-pr 5447 and shorten proof. (Revised by BJ, 14-Apr-2024.) |
Ref | Expression |
---|---|
pwundif | ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . . . 4 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | 1 | sspwi 4634 | . . 3 ⊢ 𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) |
3 | undif 4505 | . . 3 ⊢ (𝒫 𝐴 ⊆ 𝒫 (𝐴 ∪ 𝐵) ↔ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 2, 3 | mpbi 230 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴 ∪ 𝐵) |
5 | uncom 4181 | . 2 ⊢ (𝒫 𝐴 ∪ (𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴)) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) | |
6 | 4, 5 | eqtr3i 2770 | 1 ⊢ 𝒫 (𝐴 ∪ 𝐵) = ((𝒫 (𝐴 ∪ 𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 ∪ cun 3974 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 |
This theorem is referenced by: pwfilem 9384 pwfilemOLD 9416 |
Copyright terms: Public domain | W3C validator |