MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwundif Structured version   Visualization version   GIF version

Theorem pwundif 4646
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) Remove use of ax-sep 5317, ax-nul 5324, ax-pr 5447 and shorten proof. (Revised by BJ, 14-Apr-2024.)
Assertion
Ref Expression
pwundif 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)

Proof of Theorem pwundif
StepHypRef Expression
1 ssun1 4201 . . . 4 𝐴 ⊆ (𝐴𝐵)
21sspwi 4634 . . 3 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
3 undif 4505 . . 3 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ↔ (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴𝐵))
42, 3mpbi 230 . 2 (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴𝐵)
5 uncom 4181 . 2 (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
64, 5eqtr3i 2770 1 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cun 3974  wss 3976  𝒫 cpw 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-pw 4624
This theorem is referenced by:  pwfilem  9384  pwfilemOLD  9416
  Copyright terms: Public domain W3C validator