MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwundif Structured version   Visualization version   GIF version

Theorem pwundif 4604
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) Remove use of ax-sep 5271, ax-nul 5281, ax-pr 5407 and shorten proof. (Revised by BJ, 14-Apr-2024.)
Assertion
Ref Expression
pwundif 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)

Proof of Theorem pwundif
StepHypRef Expression
1 ssun1 4158 . . . 4 𝐴 ⊆ (𝐴𝐵)
21sspwi 4592 . . 3 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
3 undif 4462 . . 3 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ↔ (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴𝐵))
42, 3mpbi 230 . 2 (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴𝐵)
5 uncom 4138 . 2 (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
64, 5eqtr3i 2761 1 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3928  cun 3929  wss 3931  𝒫 cpw 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-pw 4582
This theorem is referenced by:  pwfilem  9333
  Copyright terms: Public domain W3C validator