MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwundif Structured version   Visualization version   GIF version

Theorem pwundif 4559
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.) Remove use of ax-sep 5223, ax-nul 5230, ax-pr 5352 and shorten proof. (Revised by BJ, 14-Apr-2024.)
Assertion
Ref Expression
pwundif 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)

Proof of Theorem pwundif
StepHypRef Expression
1 ssun1 4106 . . . 4 𝐴 ⊆ (𝐴𝐵)
21sspwi 4547 . . 3 𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵)
3 undif 4415 . . 3 (𝒫 𝐴 ⊆ 𝒫 (𝐴𝐵) ↔ (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴𝐵))
42, 3mpbi 229 . 2 (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = 𝒫 (𝐴𝐵)
5 uncom 4087 . 2 (𝒫 𝐴 ∪ (𝒫 (𝐴𝐵) ∖ 𝒫 𝐴)) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
64, 5eqtr3i 2768 1 𝒫 (𝐴𝐵) = ((𝒫 (𝐴𝐵) ∖ 𝒫 𝐴) ∪ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3884  cun 3885  wss 3887  𝒫 cpw 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535
This theorem is referenced by:  pwfilem  8960  pwfilemOLD  9113
  Copyright terms: Public domain W3C validator