![]() |
Metamath
Proof Explorer Theorem List (p. 47 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28347) |
![]() (28348-29872) |
![]() (29873-43661) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | snsssn 4601 | If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ({𝐴} ⊆ {𝐵} → 𝐴 = 𝐵) | ||
Theorem | mosneq 4602* | There exists at most one set whose singleton is equal to a given class. See also moeq 3588. (Contributed by BJ, 24-Sep-2022.) |
⊢ ∃*𝑥{𝑥} = 𝐴 | ||
Theorem | sneqbg 4603 | Two singletons of sets are equal iff their elements are equal. (Contributed by Scott Fenton, 16-Apr-2012.) |
⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | snsspw 4604 | The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
⊢ {𝐴} ⊆ 𝒫 𝐴 | ||
Theorem | prsspw 4605 | An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐵} ⊆ 𝒫 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) | ||
Theorem | preq1b 4606 | Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same second element iff the first elements are equal. (Contributed by AV, 18-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐴, 𝐶} = {𝐵, 𝐶} ↔ 𝐴 = 𝐵)) | ||
Theorem | preq2b 4607 | Biconditional equality lemma for unordered pairs, deduction form. Two unordered pairs have the same first element iff the second elements are equal. (Contributed by AV, 18-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ 𝐴 = 𝐵)) | ||
Theorem | preqr1 4608 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. (Contributed by NM, 18-Oct-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) | ||
Theorem | preqr2 4609 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) | ||
Theorem | preq12b 4610 | Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶))) | ||
Theorem | prel12OLD 4611 | Obsolete as of 16-Jun-2022. Use prel12g 4627 instead. (Contributed by NM, 17-Oct-1996.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (¬ 𝐴 = 𝐵 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) | ||
Theorem | opthpr 4612 | An unordered pair has the ordered pair property (compare opth 5176) under certain conditions. (Contributed by NM, 27-Mar-2007.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (𝐴 ≠ 𝐷 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | preqr1g 4613 | Reverse equality lemma for unordered pairs. If two unordered pairs have the same second element, the first elements are equal. Closed form of preqr1 4608. (Contributed by AV, 29-Jan-2021.) (Revised by AV, 18-Sep-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)) | ||
Theorem | preq12bg 4614 | Closed form of preq12b 4610. (Contributed by Scott Fenton, 28-Mar-2014.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | ||
Theorem | prel12gOLD 4615 | Obsolete version of prel12g 4627 as of 12-Jun-2022. (Contributed by AV, 9-Dec-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (¬ 𝐴 = 𝐵 → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷})))) | ||
Theorem | prneimg 4616 | Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → (((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) → {𝐴, 𝐵} ≠ {𝐶, 𝐷})) | ||
Theorem | prnebg 4617 | A (proper) pair is not equal to another (maybe improper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌) ∧ 𝐴 ≠ 𝐵) → (((𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∨ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) ↔ {𝐴, 𝐵} ≠ {𝐶, 𝐷})) | ||
Theorem | pr1eqbg 4618 | A (proper) pair is equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 = 𝐶 ↔ {𝐴, 𝐵} = {𝐵, 𝐶})) | ||
Theorem | pr1nebg 4619 | A (proper) pair is not equal to another (maybe improper) pair containing one element of the first pair if and only if the other element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 26-Jan-2018.) |
⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → (𝐴 ≠ 𝐶 ↔ {𝐴, 𝐵} ≠ {𝐵, 𝐶})) | ||
Theorem | preqsnd 4620 | Equivalence for a pair equal to a singleton, deduction form. (Contributed by Thierry Arnoux, 27-Dec-2016.) (Revised by AV, 13-Jun-2022.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) ⇒ ⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) | ||
Theorem | preqsndOLD 4621 | Obsolete version of preqsnd 4620 as of 12-Jun-2022: Hypothesis preqsndOLD.3 is not needed. (Contributed by Thierry Arnoux, 27-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝐶 ∈ V) ⇒ ⊢ (𝜑 → ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶))) | ||
Theorem | prnesn 4622 | A proper unordered pair is not a (proper or improper) singleton. (Contributed by AV, 13-Jun-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≠ {𝐶}) | ||
Theorem | prneprprc 4623 | A proper unordered pair is not an improper unordered pair. (Contributed by AV, 13-Jun-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ≠ {𝐶, 𝐷}) | ||
Theorem | preqsn 4624 | Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) (Proof revised by AV, 12-Jun-2022.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
Theorem | preqsnOLD 4625 | Obsolete proof of preqsn 4624 as of 12-Jun-2022. (Contributed by NM, 3-Jun-2008.) (Proof shortened by JJ, 23-Jul-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ({𝐴, 𝐵} = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐶)) | ||
Theorem | preq12nebg 4626 | Equality relationship for two proper unordered pairs. (Contributed by AV, 12-Jun-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) ∨ (𝐴 = 𝐷 ∧ 𝐵 = 𝐶)))) | ||
Theorem | prel12g 4627 | Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) (Revised by AV, 9-Dec-2018.) (Revised by AV, 12-Jun-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 ∈ {𝐶, 𝐷} ∧ 𝐵 ∈ {𝐶, 𝐷}))) | ||
Theorem | opthprneg 4628 | An unordered pair has the ordered pair property (compare opth 5176) under certain conditions. Variant of opthpr 4612 in closed form. (Contributed by AV, 13-Jun-2022.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐷)) → ({𝐴, 𝐵} = {𝐶, 𝐷} ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
Theorem | elpreqprlem 4629* | Lemma for elpreqpr 4630. (Contributed by Scott Fenton, 7-Dec-2020.) (Revised by AV, 9-Dec-2020.) |
⊢ (𝐵 ∈ 𝑉 → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) | ||
Theorem | elpreqpr 4630* | Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020.) |
⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | ||
Theorem | elpreqprb 4631* | A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) | ||
Theorem | elpr2elpr 4632* | For an element 𝐴 of an unordered pair which is a subset of a given set 𝑉, there is another (maybe the same) element 𝑏 of the given set 𝑉 being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) | ||
Theorem | dfopif 4633 | Rewrite df-op 4405 using if. When both arguments are sets, it reduces to the standard Kuratowski definition; otherwise, it is defined to be the empty set. Avoid directly depending on this detail so that theorems will not depend on the Kuratowski construction. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
⊢ 〈𝐴, 𝐵〉 = if((𝐴 ∈ V ∧ 𝐵 ∈ V), {{𝐴}, {𝐴, 𝐵}}, ∅) | ||
Theorem | dfopg 4634 | Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) (Avoid depending on this detail.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | ||
Theorem | dfop 4635 | Value of an ordered pair when the arguments are sets, with the conclusion corresponding to Kuratowski's original definition. (Contributed by NM, 25-Jun-1998.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} | ||
Theorem | opeq1 4636 | Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | ||
Theorem | opeq2 4637 | Equality theorem for ordered pairs. (Contributed by NM, 25-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | ||
Theorem | opeq12 4638 | Equality theorem for ordered pairs. (Contributed by NM, 28-May-1995.) |
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → 〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉) | ||
Theorem | opeq1i 4639 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉 | ||
Theorem | opeq2i 4640 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉 | ||
Theorem | opeq12i 4641 | Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Eric Schmidt, 4-Apr-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉 | ||
Theorem | opeq1d 4642 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | ||
Theorem | opeq2d 4643 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐴〉 = 〈𝐶, 𝐵〉) | ||
Theorem | opeq12d 4644 | Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐷〉) | ||
Theorem | oteq1 4645 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) | ||
Theorem | oteq2 4646 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) | ||
Theorem | oteq3 4647 | Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.) |
⊢ (𝐴 = 𝐵 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | ||
Theorem | oteq1d 4648 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐷〉 = 〈𝐵, 𝐶, 𝐷〉) | ||
Theorem | oteq2d 4649 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐴, 𝐷〉 = 〈𝐶, 𝐵, 𝐷〉) | ||
Theorem | oteq3d 4650 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷, 𝐴〉 = 〈𝐶, 𝐷, 𝐵〉) | ||
Theorem | oteq123d 4651 | Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐸 = 𝐹) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐶, 𝐸〉 = 〈𝐵, 𝐷, 𝐹〉) | ||
Theorem | nfop 4652 | Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥〈𝐴, 𝐵〉 | ||
Theorem | nfopd 4653 | Deduction version of bound-variable hypothesis builder nfop 4652. This shows how the deduction version of a not-free theorem such as nfop 4652 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) & ⊢ (𝜑 → Ⅎ𝑥𝐵) ⇒ ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) | ||
Theorem | csbopg 4654 | Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌〈𝐶, 𝐷〉 = 〈⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷〉) | ||
Theorem | opidg 4655 | The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Closed form of opid 4656. (Contributed by Peter Mazsa, 22-Jul-2019.) (Avoid depending on this detail.) |
⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) | ||
Theorem | opid 4656 | The ordered pair 〈𝐴, 𝐴〉 in Kuratowski's representation. Inference form of opidg 4655. (Contributed by FL, 28-Dec-2011.) (Proof shortened by AV, 16-Feb-2022.) (Avoid depending on this detail.) |
⊢ 𝐴 ∈ V ⇒ ⊢ 〈𝐴, 𝐴〉 = {{𝐴}} | ||
Theorem | ralunsn 4657* | Restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 23-Apr-2015.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ 𝜓))) | ||
Theorem | 2ralunsn 4658* | Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜃)) ⇒ ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ (𝐴 ∪ {𝐵})∀𝑦 ∈ (𝐴 ∪ {𝐵})𝜑 ↔ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ∧ (∀𝑦 ∈ 𝐴 𝜒 ∧ 𝜃)))) | ||
Theorem | opprc 4659 | Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | ||
Theorem | opprc1 4660 | Expansion of an ordered pair when the first member is a proper class. See also opprc 4659. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) | ||
Theorem | opprc2 4661 | Expansion of an ordered pair when the second member is a proper class. See also opprc 4659. (Contributed by NM, 15-Nov-1994.) (Revised by Mario Carneiro, 26-Apr-2015.) |
⊢ (¬ 𝐵 ∈ V → 〈𝐴, 𝐵〉 = ∅) | ||
Theorem | oprcl 4662 | If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.) |
⊢ (𝐶 ∈ 〈𝐴, 𝐵〉 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | ||
Theorem | pwsn 4663 | The power set of a singleton. (Contributed by NM, 5-Jun-2006.) |
⊢ 𝒫 {𝐴} = {∅, {𝐴}} | ||
Theorem | pwsnALT 4664 | Alternate proof of pwsn 4663, more direct. (Contributed by NM, 5-Jun-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝒫 {𝐴} = {∅, {𝐴}} | ||
Theorem | pwpr 4665 | The power set of an unordered pair. (Contributed by NM, 1-May-2009.) |
⊢ 𝒫 {𝐴, 𝐵} = ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) | ||
Theorem | pwtp 4666 | The power set of an unordered triple. (Contributed by Mario Carneiro, 2-Jul-2016.) |
⊢ 𝒫 {𝐴, 𝐵, 𝐶} = (({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ∪ ({{𝐶}, {𝐴, 𝐶}} ∪ {{𝐵, 𝐶}, {𝐴, 𝐵, 𝐶}})) | ||
Theorem | pwpwpw0 4667 | Compute the power set of the power set of the power set of the empty set. (See also pw0 4574 and pwpw0 4575.) (Contributed by NM, 2-May-2009.) |
⊢ 𝒫 {∅, {∅}} = ({∅, {∅}} ∪ {{{∅}}, {∅, {∅}}}) | ||
Theorem | pwv 4668 | The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
⊢ 𝒫 V = V | ||
Theorem | prproe 4669* | For an element of a proper unordered pair of elements of a class 𝑉, there is another (different) element of the class 𝑉 which is an element of the proper pair. (Contributed by AV, 18-Dec-2021.) |
⊢ ((𝐶 ∈ {𝐴, 𝐵} ∧ 𝐴 ≠ 𝐵 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) → ∃𝑣 ∈ (𝑉 ∖ {𝐶})𝑣 ∈ {𝐴, 𝐵}) | ||
Theorem | 3elpr2eq 4670 | If there are three elements in a proper unordered pair, and two of them are different from the third one, the two must be equal. (Contributed by AV, 19-Dec-2021.) |
⊢ (((𝑋 ∈ {𝐴, 𝐵} ∧ 𝑌 ∈ {𝐴, 𝐵} ∧ 𝑍 ∈ {𝐴, 𝐵}) ∧ (𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋)) → 𝑌 = 𝑍) | ||
Syntax | cuni 4671 | Extend class notation to include the union of a class. Read: "union (of) 𝐴". |
class ∪ 𝐴 | ||
Definition | df-uni 4672* | Define the union of a class i.e. the collection of all members of the members of the class. Definition 5.5 of [TakeutiZaring] p. 16. For example, ∪ {{1, 3}, {1, 8}} = {1, 3, 8} (ex-uni 27858). This is similar to the union of two classes df-un 3797. (Contributed by NM, 23-Aug-1993.) |
⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} | ||
Theorem | dfuni2 4673* | Alternate definition of class union. (Contributed by NM, 28-Jun-1998.) |
⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | ||
Theorem | eluni 4674* | Membership in class union. (Contributed by NM, 22-May-1994.) |
⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) | ||
Theorem | eluni2 4675* | Membership in class union. Restricted quantifier version. (Contributed by NM, 31-Aug-1999.) |
⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) | ||
Theorem | elunii 4676 | Membership in class union. (Contributed by NM, 24-Mar-1995.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ ∪ 𝐶) | ||
Theorem | nfuni 4677 | Bound-variable hypothesis builder for union. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥∪ 𝐴 | ||
Theorem | nfunid 4678 | Deduction version of nfuni 4677. (Contributed by NM, 18-Feb-2013.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥∪ 𝐴) | ||
Theorem | unieq 4679 | Equality theorem for class union. Exercise 15 of [TakeutiZaring] p. 18. (Contributed by NM, 10-Aug-1993.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | ||
Theorem | unieqi 4680 | Inference of equality of two class unions. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝐴 = ∪ 𝐵 | ||
Theorem | unieqd 4681 | Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 = ∪ 𝐵) | ||
Theorem | eluniab 4682* | Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
⊢ (𝐴 ∈ ∪ {𝑥 ∣ 𝜑} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝜑)) | ||
Theorem | elunirab 4683* | Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) | ||
Theorem | unipr 4684 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 23-Aug-1993.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵) | ||
Theorem | uniprg 4685 | The union of a pair is the union of its members. Proposition 5.7 of [TakeutiZaring] p. 16. (Contributed by NM, 25-Aug-2006.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | ||
Theorem | unisng 4686 | A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | ||
Theorem | unisn 4687 | A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∪ {𝐴} = 𝐴 | ||
Theorem | unisnOLD 4688 | Obsolete proof of unisn 4687 as of 16-Sep-2022. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∪ {𝐴} = 𝐴 | ||
Theorem | unisngOLD 4689 | Obsolete proof of unisng 4686 as of 16-Sep-2022. (Contributed by NM, 13-Aug-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | ||
Theorem | unisn3 4690* | Union of a singleton in the form of a restricted class abstraction. (Contributed by NM, 3-Jul-2008.) |
⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 = 𝐴} = 𝐴) | ||
Theorem | dfnfc2 4691* | An alternative statement of the effective freeness of a class 𝐴, when it is a set. (Contributed by Mario Carneiro, 14-Oct-2016.) (Proof shortened by JJ, 26-Jul-2021.) |
⊢ (∀𝑥 𝐴 ∈ 𝑉 → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) | ||
Theorem | uniun 4692 | The class union of the union of two classes. Theorem 8.3 of [Quine] p. 53. (Contributed by NM, 20-Aug-1993.) |
⊢ ∪ (𝐴 ∪ 𝐵) = (∪ 𝐴 ∪ ∪ 𝐵) | ||
Theorem | uniin 4693 | The class union of the intersection of two classes. Exercise 4.12(n) of [Mendelson] p. 235. See uniinqs 8110 for a condition where equality holds. (Contributed by NM, 4-Dec-2003.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ ∪ (𝐴 ∩ 𝐵) ⊆ (∪ 𝐴 ∩ ∪ 𝐵) | ||
Theorem | uniss 4694 | Subclass relationship for class union. Theorem 61 of [Suppes] p. 39. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → ∪ 𝐴 ⊆ ∪ 𝐵) | ||
Theorem | ssuni 4695 | Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 26-Jul-2021.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ⊆ ∪ 𝐶) | ||
Theorem | unissi 4696 | Subclass relationship for subclass union. Inference form of uniss 4694. (Contributed by David Moews, 1-May-2017.) |
⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ ∪ 𝐴 ⊆ ∪ 𝐵 | ||
Theorem | unissd 4697 | Subclass relationship for subclass union. Deduction form of uniss 4694. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝐴 ⊆ ∪ 𝐵) | ||
Theorem | uni0b 4698 | The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004.) |
⊢ (∪ 𝐴 = ∅ ↔ 𝐴 ⊆ {∅}) | ||
Theorem | uni0c 4699* | The union of a set is empty iff all of its members are empty. (Contributed by NM, 16-Aug-2006.) |
⊢ (∪ 𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 = ∅) | ||
Theorem | uni0 4700 | The union of the empty set is the empty set. Theorem 8.7 of [Quine] p. 54. (Reproved without relying on ax-nul 5025 by Eric Schmidt.) (Contributed by NM, 16-Sep-1993.) (Revised by Eric Schmidt, 4-Apr-2007.) |
⊢ ∪ ∅ = ∅ |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |