HomeHome Metamath Proof Explorer
Theorem List (p. 47 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 4601-4700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremelsn2 4601 There is exactly one element in a singleton. Exercise 2 of [TakeutiZaring] p. 15. This variation requires only that 𝐵, rather than 𝐴, be a set. (Contributed by NM, 12-Jun-1994.)
𝐵 ∈ V       (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)
 
Theoremnelsn 4602 If a class is not equal to the class in a singleton, then it is not in the singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof shortened by BJ, 4-May-2021.)
(𝐴𝐵 → ¬ 𝐴 ∈ {𝐵})
 
Theoremrabeqsn 4603* Conditions for a restricted class abstraction to be a singleton. (Contributed by AV, 18-Apr-2019.) (Proof shortened by AV, 26-Aug-2022.)
({𝑥𝑉𝜑} = {𝑋} ↔ ∀𝑥((𝑥𝑉𝜑) ↔ 𝑥 = 𝑋))
 
Theoremrabsssn 4604* Conditions for a restricted class abstraction to be a subset of a singleton, i.e. to be a singleton or the empty set. (Contributed by AV, 18-Apr-2019.)
({𝑥𝑉𝜑} ⊆ {𝑋} ↔ ∀𝑥𝑉 (𝜑𝑥 = 𝑋))
 
Theoremralsnsg 4605* Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
 
Theoremrexsns 4606* Restricted existential quantification over a singleton. (Contributed by Mario Carneiro, 23-Apr-2015.) (Revised by NM, 22-Aug-2018.)
(∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑)
 
Theoremrexsngf 4607* Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) (Revised by Glauco Siliprandi, 17-Aug-2020.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
 
Theoremralsngf 4608* Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by AV, 3-Apr-2023.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
 
Theoremreusngf 4609* Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023.)
𝑥𝜓    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
 
Theoremralsng 4610* Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 30-Sep-2024.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
 
Theoremrexsng 4611* Restricted existential quantification over a singleton. (Contributed by NM, 29-Jan-2012.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 30-Sep-2024.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
 
Theoremreusng 4612* Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃!𝑥 ∈ {𝐴}𝜑𝜓))
 
Theorem2ralsng 4613* Substitution expressed in terms of two quantifications over singletons. (Contributed by AV, 22-Dec-2019.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))       ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐵}𝜑𝜒))
 
TheoremralsngOLD 4614* Obsolete version of ralsng 4610 as of 30-Sep-2024. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.) (Proof shortened by AV, 7-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
 
TheoremrexsngOLD 4615* Obsolete version of rexsng 4611 as of 30-Sep-2024. (Contributed by NM, 29-Jan-2012.) (Proof shortened by AV, 7-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑𝜓))
 
Theoremrexreusng 4616* Restricted existential uniqueness over a singleton is equivalent to a restricted existential quantification over a singleton. (Contributed by AV, 3-Apr-2023.)
(𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃!𝑥 ∈ {𝐴}𝜑))
 
Theoremexsnrex 4617 There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
(∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})
 
Theoremralsn 4618* Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∀𝑥 ∈ {𝐴}𝜑𝜓)
 
Theoremrexsn 4619* Convert an existential quantification restricted to a singleton to a substitution. (Contributed by Jeff Madsen, 5-Jan-2011.)
𝐴 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))       (∃𝑥 ∈ {𝐴}𝜑𝜓)
 
Theoremelpwunsn 4620 Membership in an extension of a power class. (Contributed by NM, 26-Mar-2007.)
(𝐴 ∈ (𝒫 (𝐵 ∪ {𝐶}) ∖ 𝒫 𝐵) → 𝐶𝐴)
 
Theoremeqoreldif 4621 An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020.) (Proof shortened by JJ, 23-Jul-2021.)
(𝐵𝐶 → (𝐴𝐶 ↔ (𝐴 = 𝐵𝐴 ∈ (𝐶 ∖ {𝐵}))))
 
Theoremeltpg 4622 Members of an unordered triple of classes. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Mario Carneiro, 11-Feb-2015.)
(𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
 
Theoremeldiftp 4623 Membership in a set with three elements removed. Similar to eldifsn 4721 and eldifpr 4594. (Contributed by David A. Wheeler, 22-Jul-2017.)
(𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
 
Theoremeltpi 4624 A member of an unordered triple of classes is one of them. (Contributed by Mario Carneiro, 11-Feb-2015.)
(𝐴 ∈ {𝐵, 𝐶, 𝐷} → (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
 
Theoremeltp 4625 A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
𝐴 ∈ V       (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
 
Theoremdftp2 4626* Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.)
{𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴𝑥 = 𝐵𝑥 = 𝐶)}
 
Theoremnfpr 4627 Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995.)
𝑥𝐴    &   𝑥𝐵       𝑥{𝐴, 𝐵}
 
Theoremifpr 4628 Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
 
Theoremralprgf 4629* Convert a restricted universal quantification over a pair to a conjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011.) (Revised by AV, 8-Apr-2023.)
𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
Theoremrexprgf 4630* Convert a restricted existential quantification over a pair to a disjunction, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 17-Sep-2011.) (Revised by AV, 2-Apr-2023.)
𝑥𝜓    &   𝑥𝜒    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
Theoremralprg 4631* Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 30-Sep-2024.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
TheoremralprgOLD 4632* Obsolete version of ralprg 4631 as of 30-Sep-2024. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) (Proof shortened by AV, 8-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
Theoremrexprg 4633* Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) Avoid ax-10 2138, ax-12 2172. (Revised by Gino Giotto, 30-Sep-2024.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
TheoremrexprgOLD 4634* Obsolete version of rexprg 4633 as of 30-Sep-2024. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.) (Proof shortened by AV, 8-Apr-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
 
Theoremraltpg 4635* Convert a restricted universal quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
 
Theoremrextpg 4636* Convert a restricted existential quantification over a triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃)))
 
Theoremralpr 4637* Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
 
Theoremrexpr 4638* Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
 
Theoremreuprg0 4639* Convert a restricted existential uniqueness over a pair to a disjunction of conjunctions. (Contributed by AV, 2-Apr-2023.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ((𝜓 ∧ (𝜒𝐴 = 𝐵)) ∨ (𝜒 ∧ (𝜓𝐴 = 𝐵)))))
 
Theoremreuprg 4640* Convert a restricted existential uniqueness over a pair to a disjunction and an implication . (Contributed by AV, 2-Apr-2023.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ ((𝜓𝜒) ∧ ((𝜒𝜓) → 𝐴 = 𝐵))))
 
Theoremreurexprg 4641* Convert a restricted existential uniqueness over a pair to a restricted existential quantification and an implication . (Contributed by AV, 3-Apr-2023.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))       ((𝐴𝑉𝐵𝑊) → (∃!𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (∃𝑥 ∈ {𝐴, 𝐵}𝜑 ∧ ((𝜒𝜓) → 𝐴 = 𝐵))))
 
Theoremraltp 4642* Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
 
Theoremrextp 4643* Convert an existential quantification over an unordered triple to a disjunction. (Contributed by Mario Carneiro, 23-Apr-2015.)
𝐴 ∈ V    &   𝐵 ∈ V    &   𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐵 → (𝜑𝜒))    &   (𝑥 = 𝐶 → (𝜑𝜃))       (∃𝑥 ∈ {𝐴, 𝐵, 𝐶}𝜑 ↔ (𝜓𝜒𝜃))
 
Theoremnfsn 4644 Bound-variable hypothesis builder for singletons. (Contributed by NM, 14-Nov-1995.)
𝑥𝐴       𝑥{𝐴}
 
Theoremcsbsng 4645 Distribute proper substitution through the singleton of a class. csbsng 4645 is derived from the virtual deduction proof csbsngVD 42520. (Contributed by Alan Sare, 10-Nov-2012.)
(𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
 
Theoremcsbprg 4646 Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018.)
(𝐶𝑉𝐶 / 𝑥{𝐴, 𝐵} = {𝐶 / 𝑥𝐴, 𝐶 / 𝑥𝐵})
 
Theoremelinsn 4647 If the intersection of two classes is a (proper) singleton, then the singleton element is a member of both classes. (Contributed by AV, 30-Dec-2021.)
((𝐴𝑉 ∧ (𝐵𝐶) = {𝐴}) → (𝐴𝐵𝐴𝐶))
 
Theoremdisjsn 4648 Intersection with the singleton of a non-member is disjoint. (Contributed by NM, 22-May-1998.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
 
Theoremdisjsn2 4649 Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.)
(𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
 
Theoremdisjpr2 4650 Two completely distinct unordered pairs are disjoint. (Contributed by Alexander van der Vekens, 11-Nov-2017.) (Proof shortened by JJ, 23-Jul-2021.)
(((𝐴𝐶𝐵𝐶) ∧ (𝐴𝐷𝐵𝐷)) → ({𝐴, 𝐵} ∩ {𝐶, 𝐷}) = ∅)
 
Theoremdisjprsn 4651 The disjoint intersection of an unordered pair and a singleton. (Contributed by AV, 23-Jan-2021.)
((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
 
Theoremdisjtpsn 4652 The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.)
((𝐴𝐷𝐵𝐷𝐶𝐷) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷}) = ∅)
 
Theoremdisjtp2 4653 Two completely distinct unordered triples are disjoint. (Contributed by AV, 14-Nov-2021.)
(((𝐴𝐷𝐵𝐷𝐶𝐷) ∧ (𝐴𝐸𝐵𝐸𝐶𝐸) ∧ (𝐴𝐹𝐵𝐹𝐶𝐹)) → ({𝐴, 𝐵, 𝐶} ∩ {𝐷, 𝐸, 𝐹}) = ∅)
 
Theoremsnprc 4654 The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 21-Jun-1993.)
𝐴 ∈ V ↔ {𝐴} = ∅)
 
Theoremsnnzb 4655 A singleton is nonempty iff its argument is a set. (Contributed by Scott Fenton, 8-May-2018.)
(𝐴 ∈ V ↔ {𝐴} ≠ ∅)
 
Theoremrmosn 4656* A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.)
∃*𝑥 ∈ {𝐴}𝜑
 
Theoremr19.12sn 4657* Special case of r19.12 3258 where its converse holds. (Contributed by NM, 19-May-2008.) (Revised by Mario Carneiro, 23-Apr-2015.) (Revised by BJ, 18-Mar-2020.)
(𝐴𝑉 → (∃𝑥 ∈ {𝐴}∀𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥 ∈ {𝐴}𝜑))
 
Theoremrabsn 4658* Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) (Proof shortened by AV, 26-Aug-2022.)
(𝐵𝐴 → {𝑥𝐴𝑥 = 𝐵} = {𝐵})
 
Theoremrabsnifsb 4659* A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 21-Jul-2019.)
{𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
 
Theoremrabsnif 4660* A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019.) (Proof shortened by AV, 21-Jul-2019.)
(𝑥 = 𝐴 → (𝜑𝜓))       {𝑥 ∈ {𝐴} ∣ 𝜑} = if(𝜓, {𝐴}, ∅)
 
Theoremrabrsn 4661* A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.)
(𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
 
Theoremeuabsn2 4662* Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by Mario Carneiro, 14-Nov-2016.)
(∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
 
Theoremeuabsn 4663 Another way to express existential uniqueness of a wff: its class abstraction is a singleton. (Contributed by NM, 22-Feb-2004.)
(∃!𝑥𝜑 ↔ ∃𝑥{𝑥𝜑} = {𝑥})
 
Theoremreusn 4664* A way to express restricted existential uniqueness of a wff: its restricted class abstraction is a singleton. (Contributed by NM, 30-May-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
(∃!𝑥𝐴 𝜑 ↔ ∃𝑦{𝑥𝐴𝜑} = {𝑦})
 
Theoremabsneu 4665 Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)
 
Theoremrabsneu 4666 Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.) (Revised by Mario Carneiro, 23-Dec-2016.)
((𝐴𝑉 ∧ {𝑥𝐵𝜑} = {𝐴}) → ∃!𝑥𝐵 𝜑)
 
Theoremeusn 4667* Two ways to express "𝐴 is a singleton". (Contributed by NM, 30-Oct-2010.)
(∃!𝑥 𝑥𝐴 ↔ ∃𝑥 𝐴 = {𝑥})
 
Theoremrabsnt 4668* Truth implied by equality of a restricted class abstraction and a singleton. (Contributed by NM, 29-May-2006.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
𝐵 ∈ V    &   (𝑥 = 𝐵 → (𝜑𝜓))       ({𝑥𝐴𝜑} = {𝐵} → 𝜓)
 
Theoremprcom 4669 Commutative law for unordered pairs. (Contributed by NM, 15-Jul-1993.)
{𝐴, 𝐵} = {𝐵, 𝐴}
 
Theorempreq1 4670 Equality theorem for unordered pairs. (Contributed by NM, 29-Mar-1998.)
(𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶})
 
Theorempreq2 4671 Equality theorem for unordered pairs. (Contributed by NM, 15-Jul-1993.)
(𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵})
 
Theorempreq12 4672 Equality theorem for unordered pairs. (Contributed by NM, 19-Oct-2012.)
((𝐴 = 𝐶𝐵 = 𝐷) → {𝐴, 𝐵} = {𝐶, 𝐷})
 
Theorempreq1i 4673 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
𝐴 = 𝐵       {𝐴, 𝐶} = {𝐵, 𝐶}
 
Theorempreq2i 4674 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
𝐴 = 𝐵       {𝐶, 𝐴} = {𝐶, 𝐵}
 
Theorempreq12i 4675 Equality inference for unordered pairs. (Contributed by NM, 19-Oct-2012.)
𝐴 = 𝐵    &   𝐶 = 𝐷       {𝐴, 𝐶} = {𝐵, 𝐷}
 
Theorempreq1d 4676 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐶})
 
Theorempreq2d 4677 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐶, 𝐴} = {𝐶, 𝐵})
 
Theorempreq12d 4678 Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷})
 
Theoremtpeq1 4679 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
(𝐴 = 𝐵 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
 
Theoremtpeq2 4680 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
(𝐴 = 𝐵 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
 
Theoremtpeq3 4681 Equality theorem for unordered triples. (Contributed by NM, 13-Sep-2011.)
(𝐴 = 𝐵 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})
 
Theoremtpeq1d 4682 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐴, 𝐶, 𝐷} = {𝐵, 𝐶, 𝐷})
 
Theoremtpeq2d 4683 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐶, 𝐴, 𝐷} = {𝐶, 𝐵, 𝐷})
 
Theoremtpeq3d 4684 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)       (𝜑 → {𝐶, 𝐷, 𝐴} = {𝐶, 𝐷, 𝐵})
 
Theoremtpeq123d 4685 Equality theorem for unordered triples. (Contributed by NM, 22-Jun-2014.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)    &   (𝜑𝐸 = 𝐹)       (𝜑 → {𝐴, 𝐶, 𝐸} = {𝐵, 𝐷, 𝐹})
 
Theoremtprot 4686 Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
{𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
 
Theoremtpcoma 4687 Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.)
{𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
 
Theoremtpcomb 4688 Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.)
{𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}
 
Theoremtpass 4689 Split off the first element of an unordered triple. (Contributed by Mario Carneiro, 5-Jan-2016.)
{𝐴, 𝐵, 𝐶} = ({𝐴} ∪ {𝐵, 𝐶})
 
Theoremqdass 4690 Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})
 
Theoremqdassr 4691 Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})
 
Theoremtpidm12 4692 Unordered triple {𝐴, 𝐴, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐴, 𝐵} = {𝐴, 𝐵}
 
Theoremtpidm13 4693 Unordered triple {𝐴, 𝐵, 𝐴} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐵, 𝐴} = {𝐴, 𝐵}
 
Theoremtpidm23 4694 Unordered triple {𝐴, 𝐵, 𝐵} is just an overlong way to write {𝐴, 𝐵}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐵, 𝐵} = {𝐴, 𝐵}
 
Theoremtpidm 4695 Unordered triple {𝐴, 𝐴, 𝐴} is just an overlong way to write {𝐴}. (Contributed by David A. Wheeler, 10-May-2015.)
{𝐴, 𝐴, 𝐴} = {𝐴}
 
Theoremtppreq3 4696 An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
(𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
 
Theoremprid1g 4697 An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
(𝐴𝑉𝐴 ∈ {𝐴, 𝐵})
 
Theoremprid2g 4698 An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.)
(𝐵𝑉𝐵 ∈ {𝐴, 𝐵})
 
Theoremprid1 4699 An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 24-Jun-1993.)
𝐴 ∈ V       𝐴 ∈ {𝐴, 𝐵}
 
Theoremprid2 4700 An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Note: the proof from prid2g 4698 and ax-mp 5 has one fewer essential step but one more total step.) (Contributed by NM, 5-Aug-1993.)
𝐵 ∈ V       𝐵 ∈ {𝐴, 𝐵}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >