MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimev Structured version   Visualization version   GIF version

Theorem spimev 2400
Description: Distinct-variable version of spime 2397. (Contributed by NM, 10-Jan-1993.) Usage of this theorem is discouraged because it depends on ax-13 2380. Use spimevw 1994 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
spimev.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimev (𝜑 → ∃𝑥𝜓)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimev
StepHypRef Expression
1 nfv 1913 . 2 𝑥𝜑
2 spimev.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spime 2397 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator