![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spv | Structured version Visualization version GIF version |
Description: Specialization, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2363. Use the weaker spvv 1992 if possible. (Contributed by NM, 30-Aug-1993.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spv | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spv.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | biimpd 228 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
3 | 2 | spimv 2381 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-12 2163 ax-13 2363 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-nf 1778 |
This theorem is referenced by: axc11n-16 38298 |
Copyright terms: Public domain | W3C validator |