| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spimevw | Structured version Visualization version GIF version | ||
| Description: Existential introduction, using implicit substitution. This is to spimew 1971 what spimvw 1986 is to spimw 1970. Version of spimev 2390 and spimefv 2199 with an additional disjoint variable condition, using only Tarski's FOL axiom schemes. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 17-Mar-2020.) |
| Ref | Expression |
|---|---|
| spimevw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimevw | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | spimevw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | spimew 1971 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: dtruALT2 5320 zfpair 5371 axprlem3 5375 exneq 5390 dtruOLD 5396 fvn0ssdmfun 7028 onsupmaxb 43221 refimssco 43589 rlimdmafv 47171 rlimdmafv2 47252 elsprel 47469 |
| Copyright terms: Public domain | W3C validator |