MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimevw Structured version   Visualization version   GIF version

Theorem spimevw 1999
Description: Existential introduction, using implicit substitution. This is to spimew 1976 what spimvw 2000 is to spimw 1975. Version of spimev 2392 and spimefv 2194 with an additional disjoint variable condition, using only Tarski's FOL axiom schemes. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 17-Mar-2020.)
Hypothesis
Ref Expression
spimevw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimevw (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimevw
StepHypRef Expression
1 ax-5 1914 . 2 (𝜑 → ∀𝑥𝜑)
2 spimevw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spimew 1976 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-ex 1784
This theorem is referenced by:  dtru  5288  zfpair  5339  fvn0ssdmfun  6934  bj-dtru  34926  sn-dtru  40116  refimssco  41104  rlimdmafv  44556  rlimdmafv2  44637  elsprel  44815
  Copyright terms: Public domain W3C validator