Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spimevw | Structured version Visualization version GIF version |
Description: Existential introduction, using implicit substitution. This is to spimew 1975 what spimvw 1999 is to spimw 1974. Version of spimev 2392 and spimefv 2191 with an additional disjoint variable condition, using only Tarski's FOL axiom schemes. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 17-Mar-2020.) |
Ref | Expression |
---|---|
spimevw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimevw | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1913 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | spimevw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | spimew 1975 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: dtruALT2 5293 zfpair 5344 dtru 5359 fvn0ssdmfun 6952 bj-dtru 34999 sn-dtru 40188 refimssco 41215 rlimdmafv 44669 rlimdmafv2 44750 elsprel 44927 |
Copyright terms: Public domain | W3C validator |