| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spimevw | Structured version Visualization version GIF version | ||
| Description: Existential introduction, using implicit substitution. This is to spimew 1971 what spimvw 1986 is to spimw 1970. Version of spimev 2390 and spimefv 2199 with an additional disjoint variable condition, using only Tarski's FOL axiom schemes. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 17-Mar-2020.) |
| Ref | Expression |
|---|---|
| spimevw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| spimevw | ⊢ (𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1910 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | spimevw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | spimew 1971 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: dtruALT2 5309 zfpair 5360 axprlem3 5364 exneq 5379 fvn0ssdmfun 7008 onsupmaxb 43222 refimssco 43590 rlimdmafv 47171 rlimdmafv2 47252 elsprel 47469 |
| Copyright terms: Public domain | W3C validator |