MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimevw Structured version   Visualization version   GIF version

Theorem spimevw 1998
Description: Existential introduction, using implicit substitution. This is to spimew 1975 what spimvw 1999 is to spimw 1974. Version of spimev 2391 and spimefv 2191 with an additional disjoint variable condition, using only Tarski's FOL axiom schemes. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 17-Mar-2020.)
Hypothesis
Ref Expression
spimevw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimevw (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimevw
StepHypRef Expression
1 ax-5 1913 . 2 (𝜑 → ∀𝑥𝜑)
2 spimevw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spimew 1975 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1782
This theorem is referenced by:  dtruALT2  5368  zfpair  5419  exneq  5435  dtruOLD  5441  fvn0ssdmfun  7076  onsupmaxb  42070  refimssco  42440  rlimdmafv  45964  rlimdmafv2  46045  elsprel  46222
  Copyright terms: Public domain W3C validator