![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spimevw | Structured version Visualization version GIF version |
Description: Existential introduction, using implicit substitution. This is to spimew 1969 what spimvw 1993 is to spimw 1968. Version of spimev 2395 and spimefv 2196 with an additional disjoint variable condition, using only Tarski's FOL axiom schemes. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 17-Mar-2020.) |
Ref | Expression |
---|---|
spimevw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimevw | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1908 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | spimevw.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | spimew 1969 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: dtruALT2 5376 zfpair 5427 axprlem3 5431 exneq 5446 dtruOLD 5452 fvn0ssdmfun 7094 onsupmaxb 43228 refimssco 43597 rlimdmafv 47127 rlimdmafv2 47208 elsprel 47400 |
Copyright terms: Public domain | W3C validator |