MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimevw Structured version   Visualization version   GIF version

Theorem spimevw 1998
Description: Existential introduction, using implicit substitution. This is to spimew 1975 what spimvw 1999 is to spimw 1974. Version of spimev 2392 and spimefv 2191 with an additional disjoint variable condition, using only Tarski's FOL axiom schemes. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 17-Mar-2020.)
Hypothesis
Ref Expression
spimevw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimevw (𝜑 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem spimevw
StepHypRef Expression
1 ax-5 1913 . 2 (𝜑 → ∀𝑥𝜑)
2 spimevw.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spimew 1975 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  dtruALT2  5293  zfpair  5344  dtru  5359  fvn0ssdmfun  6952  bj-dtru  34999  sn-dtru  40188  refimssco  41215  rlimdmafv  44669  rlimdmafv2  44750  elsprel  44927
  Copyright terms: Public domain W3C validator