MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimv Structured version   Visualization version   GIF version

Theorem spimv 2390
Description: A version of spim 2387 with a distinct variable requirement instead of a bound-variable hypothesis. See spimfv 2235 and spimvw 2000 for versions requiring fewer axioms. (Contributed by NM, 31-Jul-1993.) Usage of this theorem is discouraged because it depends on ax-13 2372. Use spimvw 2000 instead. (New usage is discouraged.)
Hypothesis
Ref Expression
spimv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimv (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spimv
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜓
2 spimv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spim 2387 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-nf 1788
This theorem is referenced by:  spv  2393
  Copyright terms: Public domain W3C validator