| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anl | Structured version Visualization version GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006.) |
| Ref | Expression |
|---|---|
| syl3anl.1 | ⊢ (𝜑 → 𝜓) |
| syl3anl.2 | ⊢ (𝜒 → 𝜃) |
| syl3anl.3 | ⊢ (𝜏 → 𝜂) |
| syl3anl.4 | ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜂) ∧ 𝜁) → 𝜎) |
| Ref | Expression |
|---|---|
| syl3anl | ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ 𝜁) → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anl.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anl.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | syl3anl.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3anl.4 | . 2 ⊢ (((𝜓 ∧ 𝜃 ∧ 𝜂) ∧ 𝜁) → 𝜎) | |
| 6 | 4, 5 | sylan 580 | 1 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ 𝜁) → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rngridlmcl 21194 chlej1 31476 chlej2 31477 atcvatlem 32351 fzunt 43413 3f1oss2 47034 |
| Copyright terms: Public domain | W3C validator |