MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anl Structured version   Visualization version   GIF version

Theorem syl3anl 1412
Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006.)
Hypotheses
Ref Expression
syl3anl.1 (𝜑𝜓)
syl3anl.2 (𝜒𝜃)
syl3anl.3 (𝜏𝜂)
syl3anl.4 (((𝜓𝜃𝜂) ∧ 𝜁) → 𝜎)
Assertion
Ref Expression
syl3anl (((𝜑𝜒𝜏) ∧ 𝜁) → 𝜎)

Proof of Theorem syl3anl
StepHypRef Expression
1 syl3anl.1 . . 3 (𝜑𝜓)
2 syl3anl.2 . . 3 (𝜒𝜃)
3 syl3anl.3 . . 3 (𝜏𝜂)
41, 2, 33anim123i 1148 . 2 ((𝜑𝜒𝜏) → (𝜓𝜃𝜂))
5 syl3anl.4 . 2 (((𝜓𝜃𝜂) ∧ 𝜁) → 𝜎)
64, 5sylan 583 1 (((𝜑𝜒𝜏) ∧ 𝜁) → 𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086
This theorem is referenced by:  chlej1  29406  chlej2  29407  atcvatlem  30281
  Copyright terms: Public domain W3C validator