HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvatlem Structured version   Visualization version   GIF version

Theorem atcvatlem 32417
Description: Lemma for atcvati 32418. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1 𝐴C
Assertion
Ref Expression
atcvatlem (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0𝐴 ⊊ (𝐵 𝐶))) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))

Proof of Theorem atcvatlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . 4 𝐴C
21hatomici 32391 . . 3 (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms 𝑥𝐴)
3 nssne2 4072 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → 𝑥𝐵)
43adantrl 715 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥𝐵)
5 atnemeq0 32409 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝑥𝐵 ↔ (𝑥𝐵) = 0))
64, 5imbitrid 244 . . . . . . . . . . . . . . 15 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → (𝑥𝐵) = 0))
7 atelch 32376 . . . . . . . . . . . . . . . 16 (𝑥 ∈ HAtoms → 𝑥C )
8 cvp 32407 . . . . . . . . . . . . . . . . 17 ((𝑥C𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝑥 𝐵)))
9 atelch 32376 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ HAtoms → 𝐵C )
10 chjcom 31538 . . . . . . . . . . . . . . . . . . 19 ((𝑥C𝐵C ) → (𝑥 𝐵) = (𝐵 𝑥))
119, 10sylan2 592 . . . . . . . . . . . . . . . . . 18 ((𝑥C𝐵 ∈ HAtoms) → (𝑥 𝐵) = (𝐵 𝑥))
1211breq2d 5178 . . . . . . . . . . . . . . . . 17 ((𝑥C𝐵 ∈ HAtoms) → (𝑥 (𝑥 𝐵) ↔ 𝑥 (𝐵 𝑥)))
138, 12bitrd 279 . . . . . . . . . . . . . . . 16 ((𝑥C𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝐵 𝑥)))
147, 13sylan 579 . . . . . . . . . . . . . . 15 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝐵 𝑥)))
156, 14sylibd 239 . . . . . . . . . . . . . 14 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1615ancoms 458 . . . . . . . . . . . . 13 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1716adantlr 714 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1817imp 406 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝑥 (𝐵 𝑥))
19 chub1 31539 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C ) → 𝐵 ⊆ (𝐵 𝑥))
209, 7, 19syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐵 ⊆ (𝐵 𝑥))
21203adant3 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ⊆ (𝐵 𝑥))
2221adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝐵 ⊆ (𝐵 𝑥))
23 pssss 4121 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊆ (𝐵 𝐶))
24 sstr 4017 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐴𝐴 ⊆ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2523, 24sylan2 592 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴𝐴 ⊊ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2625adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2726adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝑥 ⊆ (𝐵 𝐶))
28 incom 4230 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵𝑥) = (𝑥𝐵)
293, 5imbitrid 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
3029ancoms 458 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
31303adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
3231imp 406 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝑥𝐵) = 0)
3328, 32eqtrid 2792 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐵𝑥) = 0)
3433adantrr 716 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵𝑥) = 0)
35 atexch 32413 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
369, 35syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
3827, 34, 37mp2and 698 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝐶 ⊆ (𝐵 𝑥))
39 atelch 32376 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐶 ∈ HAtoms → 𝐶C )
40 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → 𝐵C )
41 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → 𝐶C )
42 chjcl 31389 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵C𝑥C ) → (𝐵 𝑥) ∈ C )
43423adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → (𝐵 𝑥) ∈ C )
4440, 41, 433jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C𝐶C ) → (𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ))
459, 7, 39, 44syl3an 1160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ))
46 chlub 31541 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4847adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4922, 38, 48mpbi2and 711 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝐶) ⊆ (𝐵 𝑥))
50 chub1 31539 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝐶C ) → 𝐵 ⊆ (𝐵 𝐶))
51503adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝑥C𝐶C ) → 𝐵 ⊆ (𝐵 𝐶))
5251, 26anim12i 612 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)))
53 chjcl 31389 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
54533adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C𝐶C ) → (𝐵 𝐶) ∈ C )
55 chlub 31541 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C ∧ (𝐵 𝐶) ∈ C ) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5654, 55syld3an3 1409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝑥C𝐶C ) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5756adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5852, 57mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝑥) ⊆ (𝐵 𝐶))
599, 7, 39, 58syl3anl 1415 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝑥) ⊆ (𝐵 𝐶))
6049, 59eqssd 4026 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝐶) = (𝐵 𝑥))
6160anassrs 467 . . . . . . . . . . . . . . . . . . 19 ((((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ⊊ (𝐵 𝐶)) → (𝐵 𝐶) = (𝐵 𝑥))
6261psseq2d 4119 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ⊊ (𝐵 𝐶)) → (𝐴 ⊊ (𝐵 𝐶) ↔ 𝐴 ⊊ (𝐵 𝑥)))
6362ex 412 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐴 ⊊ (𝐵 𝐶) → (𝐴 ⊊ (𝐵 𝐶) ↔ 𝐴 ⊊ (𝐵 𝑥))))
6463ibd 269 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))
6564exp32 420 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
66653expa 1118 . . . . . . . . . . . . . 14 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝐶 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
6766an32s 651 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
6867com34 91 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ⊊ (𝐵 𝑥)))))
6968imp45 429 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 ⊊ (𝐵 𝑥))
70 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝐵C𝑥C ) → 𝑥C )
7170, 42jca 511 . . . . . . . . . . . . . . . 16 ((𝐵C𝑥C ) → (𝑥C ∧ (𝐵 𝑥) ∈ C ))
729, 7, 71syl2an 595 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥C ∧ (𝐵 𝑥) ∈ C ))
73 cvnbtwn3 32320 . . . . . . . . . . . . . . . . . . 19 ((𝑥C ∧ (𝐵 𝑥) ∈ C𝐴C ) → (𝑥 (𝐵 𝑥) → ((𝑥𝐴𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
741, 73mp3an3 1450 . . . . . . . . . . . . . . . . . 18 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥 (𝐵 𝑥) → ((𝑥𝐴𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7574exp4a 431 . . . . . . . . . . . . . . . . 17 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥 (𝐵 𝑥) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝑥) → 𝐴 = 𝑥))))
7675com23 86 . . . . . . . . . . . . . . . 16 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥𝐴 → (𝑥 (𝐵 𝑥) → (𝐴 ⊊ (𝐵 𝑥) → 𝐴 = 𝑥))))
7776imp4a 422 . . . . . . . . . . . . . . 15 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7872, 77syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7978adantlr 714 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
8079imp 406 . . . . . . . . . . . 12 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ 𝑥𝐴) → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥))
8180adantrr 716 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥))
8218, 69, 81mp2and 698 . . . . . . . . . 10 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 = 𝑥)
8382eleq1d 2829 . . . . . . . . 9 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → (𝐴 ∈ HAtoms ↔ 𝑥 ∈ HAtoms))
8483biimprcd 250 . . . . . . . 8 (𝑥 ∈ HAtoms → ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 ∈ HAtoms))
8584exp4c 432 . . . . . . 7 (𝑥 ∈ HAtoms → ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥 ∈ HAtoms → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms))))
8685pm2.43b 55 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥 ∈ HAtoms → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms)))
8786imp 406 . . . . 5 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms))
8887exp4d 433 . . . 4 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
8988rexlimdva 3161 . . 3 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (∃𝑥 ∈ HAtoms 𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
902, 89syl5 34 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ≠ 0 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
9190imp32 418 1 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0𝐴 ⊊ (𝐵 𝐶))) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cin 3975  wss 3976  wpss 3977   class class class wbr 5166  (class class class)co 7448   C cch 30961   chj 30965  0c0h 30967   ccv 30996  HAtomscat 30997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-shs 31340  df-span 31341  df-chj 31342  df-chsup 31343  df-pjh 31427  df-cv 32311  df-at 32370
This theorem is referenced by:  atcvati  32418
  Copyright terms: Public domain W3C validator