HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvatlem Structured version   Visualization version   GIF version

Theorem atcvatlem 30260
Description: Lemma for atcvati 30261. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1 𝐴C
Assertion
Ref Expression
atcvatlem (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0𝐴 ⊊ (𝐵 𝐶))) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))

Proof of Theorem atcvatlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . 4 𝐴C
21hatomici 30234 . . 3 (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms 𝑥𝐴)
3 nssne2 3954 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → 𝑥𝐵)
43adantrl 716 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥𝐵)
5 atnemeq0 30252 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝑥𝐵 ↔ (𝑥𝐵) = 0))
64, 5syl5ib 247 . . . . . . . . . . . . . . 15 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → (𝑥𝐵) = 0))
7 atelch 30219 . . . . . . . . . . . . . . . 16 (𝑥 ∈ HAtoms → 𝑥C )
8 cvp 30250 . . . . . . . . . . . . . . . . 17 ((𝑥C𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝑥 𝐵)))
9 atelch 30219 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ HAtoms → 𝐵C )
10 chjcom 29381 . . . . . . . . . . . . . . . . . . 19 ((𝑥C𝐵C ) → (𝑥 𝐵) = (𝐵 𝑥))
119, 10sylan2 596 . . . . . . . . . . . . . . . . . 18 ((𝑥C𝐵 ∈ HAtoms) → (𝑥 𝐵) = (𝐵 𝑥))
1211breq2d 5045 . . . . . . . . . . . . . . . . 17 ((𝑥C𝐵 ∈ HAtoms) → (𝑥 (𝑥 𝐵) ↔ 𝑥 (𝐵 𝑥)))
138, 12bitrd 282 . . . . . . . . . . . . . . . 16 ((𝑥C𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝐵 𝑥)))
147, 13sylan 584 . . . . . . . . . . . . . . 15 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝐵 𝑥)))
156, 14sylibd 242 . . . . . . . . . . . . . 14 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1615ancoms 463 . . . . . . . . . . . . 13 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1716adantlr 715 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1817imp 411 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝑥 (𝐵 𝑥))
19 chub1 29382 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C ) → 𝐵 ⊆ (𝐵 𝑥))
209, 7, 19syl2an 599 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐵 ⊆ (𝐵 𝑥))
21203adant3 1130 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ⊆ (𝐵 𝑥))
2221adantr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝐵 ⊆ (𝐵 𝑥))
23 pssss 4002 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊆ (𝐵 𝐶))
24 sstr 3901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐴𝐴 ⊆ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2523, 24sylan2 596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴𝐴 ⊊ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2625adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2726adantl 486 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝑥 ⊆ (𝐵 𝐶))
28 incom 4107 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵𝑥) = (𝑥𝐵)
293, 5syl5ib 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
3029ancoms 463 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
31303adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
3231imp 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝑥𝐵) = 0)
3328, 32syl5eq 2806 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐵𝑥) = 0)
3433adantrr 717 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵𝑥) = 0)
35 atexch 30256 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
369, 35syl3an1 1161 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
3736adantr 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
3827, 34, 37mp2and 699 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝐶 ⊆ (𝐵 𝑥))
39 atelch 30219 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐶 ∈ HAtoms → 𝐶C )
40 simp1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → 𝐵C )
41 simp3 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → 𝐶C )
42 chjcl 29232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵C𝑥C ) → (𝐵 𝑥) ∈ C )
43423adant3 1130 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → (𝐵 𝑥) ∈ C )
4440, 41, 433jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C𝐶C ) → (𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ))
459, 7, 39, 44syl3an 1158 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ))
46 chlub 29384 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4847adantr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4922, 38, 48mpbi2and 712 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝐶) ⊆ (𝐵 𝑥))
50 chub1 29382 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝐶C ) → 𝐵 ⊆ (𝐵 𝐶))
51503adant2 1129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝑥C𝐶C ) → 𝐵 ⊆ (𝐵 𝐶))
5251, 26anim12i 616 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)))
53 chjcl 29232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
54533adant2 1129 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C𝐶C ) → (𝐵 𝐶) ∈ C )
55 chlub 29384 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C ∧ (𝐵 𝐶) ∈ C ) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5654, 55syld3an3 1407 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝑥C𝐶C ) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5756adantr 485 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5852, 57mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝑥) ⊆ (𝐵 𝐶))
599, 7, 39, 58syl3anl 1413 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝑥) ⊆ (𝐵 𝐶))
6049, 59eqssd 3910 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝐶) = (𝐵 𝑥))
6160anassrs 472 . . . . . . . . . . . . . . . . . . 19 ((((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ⊊ (𝐵 𝐶)) → (𝐵 𝐶) = (𝐵 𝑥))
6261psseq2d 4000 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ⊊ (𝐵 𝐶)) → (𝐴 ⊊ (𝐵 𝐶) ↔ 𝐴 ⊊ (𝐵 𝑥)))
6362ex 417 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐴 ⊊ (𝐵 𝐶) → (𝐴 ⊊ (𝐵 𝐶) ↔ 𝐴 ⊊ (𝐵 𝑥))))
6463ibd 272 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))
6564exp32 425 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
66653expa 1116 . . . . . . . . . . . . . 14 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝐶 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
6766an32s 652 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
6867com34 91 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ⊊ (𝐵 𝑥)))))
6968imp45 434 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 ⊊ (𝐵 𝑥))
70 simpr 489 . . . . . . . . . . . . . . . . 17 ((𝐵C𝑥C ) → 𝑥C )
7170, 42jca 516 . . . . . . . . . . . . . . . 16 ((𝐵C𝑥C ) → (𝑥C ∧ (𝐵 𝑥) ∈ C ))
729, 7, 71syl2an 599 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥C ∧ (𝐵 𝑥) ∈ C ))
73 cvnbtwn3 30163 . . . . . . . . . . . . . . . . . . 19 ((𝑥C ∧ (𝐵 𝑥) ∈ C𝐴C ) → (𝑥 (𝐵 𝑥) → ((𝑥𝐴𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
741, 73mp3an3 1448 . . . . . . . . . . . . . . . . . 18 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥 (𝐵 𝑥) → ((𝑥𝐴𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7574exp4a 436 . . . . . . . . . . . . . . . . 17 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥 (𝐵 𝑥) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝑥) → 𝐴 = 𝑥))))
7675com23 86 . . . . . . . . . . . . . . . 16 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥𝐴 → (𝑥 (𝐵 𝑥) → (𝐴 ⊊ (𝐵 𝑥) → 𝐴 = 𝑥))))
7776imp4a 427 . . . . . . . . . . . . . . 15 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7872, 77syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7978adantlr 715 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
8079imp 411 . . . . . . . . . . . 12 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ 𝑥𝐴) → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥))
8180adantrr 717 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥))
8218, 69, 81mp2and 699 . . . . . . . . . 10 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 = 𝑥)
8382eleq1d 2837 . . . . . . . . 9 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → (𝐴 ∈ HAtoms ↔ 𝑥 ∈ HAtoms))
8483biimprcd 253 . . . . . . . 8 (𝑥 ∈ HAtoms → ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 ∈ HAtoms))
8584exp4c 437 . . . . . . 7 (𝑥 ∈ HAtoms → ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥 ∈ HAtoms → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms))))
8685pm2.43b 55 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥 ∈ HAtoms → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms)))
8786imp 411 . . . . 5 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms))
8887exp4d 438 . . . 4 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
8988rexlimdva 3209 . . 3 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (∃𝑥 ∈ HAtoms 𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
902, 89syl5 34 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ≠ 0 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
9190imp32 423 1 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0𝐴 ⊊ (𝐵 𝐶))) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wrex 3072  cin 3858  wss 3859  wpss 3860   class class class wbr 5033  (class class class)co 7151   C cch 28804   chj 28808  0c0h 28810   ccv 28839  HAtomscat 28840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-inf2 9130  ax-cc 9888  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646  ax-addf 10647  ax-mulf 10648  ax-hilex 28874  ax-hfvadd 28875  ax-hvcom 28876  ax-hvass 28877  ax-hv0cl 28878  ax-hvaddid 28879  ax-hfvmul 28880  ax-hvmulid 28881  ax-hvmulass 28882  ax-hvdistr1 28883  ax-hvdistr2 28884  ax-hvmul0 28885  ax-hfi 28954  ax-his1 28957  ax-his2 28958  ax-his3 28959  ax-his4 28960  ax-hcompl 29077
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-omul 8118  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8860  df-fi 8901  df-sup 8932  df-inf 8933  df-oi 9000  df-card 9394  df-acn 9397  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-ico 12778  df-icc 12779  df-fz 12933  df-fzo 13076  df-fl 13204  df-seq 13412  df-exp 13473  df-hash 13734  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-rlim 14887  df-sum 15084  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-sets 16541  df-ress 16542  df-plusg 16629  df-mulr 16630  df-starv 16631  df-sca 16632  df-vsca 16633  df-ip 16634  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-hom 16640  df-cco 16641  df-rest 16747  df-topn 16748  df-0g 16766  df-gsum 16767  df-topgen 16768  df-pt 16769  df-prds 16772  df-xrs 16826  df-qtop 16831  df-imas 16832  df-xps 16834  df-mre 16908  df-mrc 16909  df-acs 16911  df-mgm 17911  df-sgrp 17960  df-mnd 17971  df-submnd 18016  df-mulg 18285  df-cntz 18507  df-cmn 18968  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-fbas 20156  df-fg 20157  df-cnfld 20160  df-top 21587  df-topon 21604  df-topsp 21626  df-bases 21639  df-cld 21712  df-ntr 21713  df-cls 21714  df-nei 21791  df-cn 21920  df-cnp 21921  df-lm 21922  df-haus 22008  df-tx 22255  df-hmeo 22448  df-fil 22539  df-fm 22631  df-flim 22632  df-flf 22633  df-xms 23015  df-ms 23016  df-tms 23017  df-cfil 23948  df-cau 23949  df-cmet 23950  df-grpo 28368  df-gid 28369  df-ginv 28370  df-gdiv 28371  df-ablo 28420  df-vc 28434  df-nv 28467  df-va 28470  df-ba 28471  df-sm 28472  df-0v 28473  df-vs 28474  df-nmcv 28475  df-ims 28476  df-dip 28576  df-ssp 28597  df-ph 28688  df-cbn 28738  df-hnorm 28843  df-hba 28844  df-hvsub 28846  df-hlim 28847  df-hcau 28848  df-sh 29082  df-ch 29096  df-oc 29127  df-ch0 29128  df-shs 29183  df-span 29184  df-chj 29185  df-chsup 29186  df-pjh 29270  df-cv 30154  df-at 30213
This theorem is referenced by:  atcvati  30261
  Copyright terms: Public domain W3C validator