HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvatlem Structured version   Visualization version   GIF version

Theorem atcvatlem 31676
Description: Lemma for atcvati 31677. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atoml.1 𝐴C
Assertion
Ref Expression
atcvatlem (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0𝐴 ⊊ (𝐵 𝐶))) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))

Proof of Theorem atcvatlem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atoml.1 . . . 4 𝐴C
21hatomici 31650 . . 3 (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms 𝑥𝐴)
3 nssne2 4045 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → 𝑥𝐵)
43adantrl 714 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥𝐵)
5 atnemeq0 31668 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝑥𝐵 ↔ (𝑥𝐵) = 0))
64, 5imbitrid 243 . . . . . . . . . . . . . . 15 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → (𝑥𝐵) = 0))
7 atelch 31635 . . . . . . . . . . . . . . . 16 (𝑥 ∈ HAtoms → 𝑥C )
8 cvp 31666 . . . . . . . . . . . . . . . . 17 ((𝑥C𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝑥 𝐵)))
9 atelch 31635 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ HAtoms → 𝐵C )
10 chjcom 30797 . . . . . . . . . . . . . . . . . . 19 ((𝑥C𝐵C ) → (𝑥 𝐵) = (𝐵 𝑥))
119, 10sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑥C𝐵 ∈ HAtoms) → (𝑥 𝐵) = (𝐵 𝑥))
1211breq2d 5160 . . . . . . . . . . . . . . . . 17 ((𝑥C𝐵 ∈ HAtoms) → (𝑥 (𝑥 𝐵) ↔ 𝑥 (𝐵 𝑥)))
138, 12bitrd 278 . . . . . . . . . . . . . . . 16 ((𝑥C𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝐵 𝑥)))
147, 13sylan 580 . . . . . . . . . . . . . . 15 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐵) = 0𝑥 (𝐵 𝑥)))
156, 14sylibd 238 . . . . . . . . . . . . . 14 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1615ancoms 459 . . . . . . . . . . . . 13 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1716adantlr 713 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝑥 (𝐵 𝑥)))
1817imp 407 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝑥 (𝐵 𝑥))
19 chub1 30798 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C ) → 𝐵 ⊆ (𝐵 𝑥))
209, 7, 19syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐵 ⊆ (𝐵 𝑥))
21203adant3 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ⊆ (𝐵 𝑥))
2221adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝐵 ⊆ (𝐵 𝑥))
23 pssss 4095 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊆ (𝐵 𝐶))
24 sstr 3990 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥𝐴𝐴 ⊆ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2523, 24sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥𝐴𝐴 ⊊ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2625adantlr 713 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶)) → 𝑥 ⊆ (𝐵 𝐶))
2726adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝑥 ⊆ (𝐵 𝐶))
28 incom 4201 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵𝑥) = (𝑥𝐵)
293, 5imbitrid 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
3029ancoms 459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
31303adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥𝐴 ∧ ¬ 𝐵𝐴) → (𝑥𝐵) = 0))
3231imp 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝑥𝐵) = 0)
3328, 32eqtrid 2784 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐵𝑥) = 0)
3433adantrr 715 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵𝑥) = 0)
35 atexch 31672 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
369, 35syl3an1 1163 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
3736adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝑥 ⊆ (𝐵 𝐶) ∧ (𝐵𝑥) = 0) → 𝐶 ⊆ (𝐵 𝑥)))
3827, 34, 37mp2and 697 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → 𝐶 ⊆ (𝐵 𝑥))
39 atelch 31635 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐶 ∈ HAtoms → 𝐶C )
40 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → 𝐵C )
41 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → 𝐶C )
42 chjcl 30648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵C𝑥C ) → (𝐵 𝑥) ∈ C )
43423adant3 1132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝑥C𝐶C ) → (𝐵 𝑥) ∈ C )
4440, 41, 433jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C𝐶C ) → (𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ))
459, 7, 39, 44syl3an 1160 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ))
46 chlub 30800 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝐶C ∧ (𝐵 𝑥) ∈ C ) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4745, 46syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4847adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝐵 ⊆ (𝐵 𝑥) ∧ 𝐶 ⊆ (𝐵 𝑥)) ↔ (𝐵 𝐶) ⊆ (𝐵 𝑥)))
4922, 38, 48mpbi2and 710 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝐶) ⊆ (𝐵 𝑥))
50 chub1 30798 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝐶C ) → 𝐵 ⊆ (𝐵 𝐶))
51503adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝑥C𝐶C ) → 𝐵 ⊆ (𝐵 𝐶))
5251, 26anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)))
53 chjcl 30648 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
54533adant2 1131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C𝐶C ) → (𝐵 𝐶) ∈ C )
55 chlub 30800 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐵C𝑥C ∧ (𝐵 𝐶) ∈ C ) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5654, 55syld3an3 1409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵C𝑥C𝐶C ) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5756adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → ((𝐵 ⊆ (𝐵 𝐶) ∧ 𝑥 ⊆ (𝐵 𝐶)) ↔ (𝐵 𝑥) ⊆ (𝐵 𝐶)))
5852, 57mpbid 231 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵C𝑥C𝐶C ) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝑥) ⊆ (𝐵 𝐶))
599, 7, 39, 58syl3anl 1415 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝑥) ⊆ (𝐵 𝐶))
6049, 59eqssd 3999 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((𝑥𝐴 ∧ ¬ 𝐵𝐴) ∧ 𝐴 ⊊ (𝐵 𝐶))) → (𝐵 𝐶) = (𝐵 𝑥))
6160anassrs 468 . . . . . . . . . . . . . . . . . . 19 ((((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ⊊ (𝐵 𝐶)) → (𝐵 𝐶) = (𝐵 𝑥))
6261psseq2d 4093 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ⊊ (𝐵 𝐶)) → (𝐴 ⊊ (𝐵 𝐶) ↔ 𝐴 ⊊ (𝐵 𝑥)))
6362ex 413 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐴 ⊊ (𝐵 𝐶) → (𝐴 ⊊ (𝐵 𝐶) ↔ 𝐴 ⊊ (𝐵 𝑥))))
6463ibd 268 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝑥𝐴 ∧ ¬ 𝐵𝐴)) → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))
6564exp32 421 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
66653expa 1118 . . . . . . . . . . . . . 14 (((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) ∧ 𝐶 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
6766an32s 650 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (¬ 𝐵𝐴 → (𝐴 ⊊ (𝐵 𝐶) → 𝐴 ⊊ (𝐵 𝑥)))))
6867com34 91 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ⊊ (𝐵 𝑥)))))
6968imp45 430 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 ⊊ (𝐵 𝑥))
70 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝐵C𝑥C ) → 𝑥C )
7170, 42jca 512 . . . . . . . . . . . . . . . 16 ((𝐵C𝑥C ) → (𝑥C ∧ (𝐵 𝑥) ∈ C ))
729, 7, 71syl2an 596 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥C ∧ (𝐵 𝑥) ∈ C ))
73 cvnbtwn3 31579 . . . . . . . . . . . . . . . . . . 19 ((𝑥C ∧ (𝐵 𝑥) ∈ C𝐴C ) → (𝑥 (𝐵 𝑥) → ((𝑥𝐴𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
741, 73mp3an3 1450 . . . . . . . . . . . . . . . . . 18 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥 (𝐵 𝑥) → ((𝑥𝐴𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7574exp4a 432 . . . . . . . . . . . . . . . . 17 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥 (𝐵 𝑥) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝑥) → 𝐴 = 𝑥))))
7675com23 86 . . . . . . . . . . . . . . . 16 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥𝐴 → (𝑥 (𝐵 𝑥) → (𝐴 ⊊ (𝐵 𝑥) → 𝐴 = 𝑥))))
7776imp4a 423 . . . . . . . . . . . . . . 15 ((𝑥C ∧ (𝐵 𝑥) ∈ C ) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7872, 77syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
7978adantlr 713 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥)))
8079imp 407 . . . . . . . . . . . 12 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ 𝑥𝐴) → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥))
8180adantrr 715 . . . . . . . . . . 11 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → ((𝑥 (𝐵 𝑥) ∧ 𝐴 ⊊ (𝐵 𝑥)) → 𝐴 = 𝑥))
8218, 69, 81mp2and 697 . . . . . . . . . 10 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 = 𝑥)
8382eleq1d 2818 . . . . . . . . 9 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → (𝐴 ∈ HAtoms ↔ 𝑥 ∈ HAtoms))
8483biimprcd 249 . . . . . . . 8 (𝑥 ∈ HAtoms → ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) ∧ (𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴))) → 𝐴 ∈ HAtoms))
8584exp4c 433 . . . . . . 7 (𝑥 ∈ HAtoms → ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥 ∈ HAtoms → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms))))
8685pm2.43b 55 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝑥 ∈ HAtoms → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms)))
8786imp 407 . . . . 5 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → ((𝑥𝐴 ∧ (𝐴 ⊊ (𝐵 𝐶) ∧ ¬ 𝐵𝐴)) → 𝐴 ∈ HAtoms))
8887exp4d 434 . . . 4 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝑥 ∈ HAtoms) → (𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
8988rexlimdva 3155 . . 3 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (∃𝑥 ∈ HAtoms 𝑥𝐴 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
902, 89syl5 34 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ≠ 0 → (𝐴 ⊊ (𝐵 𝐶) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))))
9190imp32 419 1 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0𝐴 ⊊ (𝐵 𝐶))) → (¬ 𝐵𝐴𝐴 ∈ HAtoms))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wrex 3070  cin 3947  wss 3948  wpss 3949   class class class wbr 5148  (class class class)co 7411   C cch 30220   chj 30224  0c0h 30226   ccv 30255  HAtomscat 30256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192  ax-hilex 30290  ax-hfvadd 30291  ax-hvcom 30292  ax-hvass 30293  ax-hv0cl 30294  ax-hvaddid 30295  ax-hfvmul 30296  ax-hvmulid 30297  ax-hvmulass 30298  ax-hvdistr1 30299  ax-hvdistr2 30300  ax-hvmul0 30301  ax-hfi 30370  ax-his1 30373  ax-his2 30374  ax-his3 30375  ax-his4 30376  ax-hcompl 30493
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-q 12935  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-ioo 13330  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-fl 13759  df-seq 13969  df-exp 14030  df-hash 14293  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-rlim 15435  df-sum 15635  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-hom 17223  df-cco 17224  df-rest 17370  df-topn 17371  df-0g 17389  df-gsum 17390  df-topgen 17391  df-pt 17392  df-prds 17395  df-xrs 17450  df-qtop 17455  df-imas 17456  df-xps 17458  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-mulg 18953  df-cntz 19183  df-cmn 19652  df-psmet 20942  df-xmet 20943  df-met 20944  df-bl 20945  df-mopn 20946  df-fbas 20947  df-fg 20948  df-cnfld 20951  df-top 22403  df-topon 22420  df-topsp 22442  df-bases 22456  df-cld 22530  df-ntr 22531  df-cls 22532  df-nei 22609  df-cn 22738  df-cnp 22739  df-lm 22740  df-haus 22826  df-tx 23073  df-hmeo 23266  df-fil 23357  df-fm 23449  df-flim 23450  df-flf 23451  df-xms 23833  df-ms 23834  df-tms 23835  df-cfil 24779  df-cau 24780  df-cmet 24781  df-grpo 29784  df-gid 29785  df-ginv 29786  df-gdiv 29787  df-ablo 29836  df-vc 29850  df-nv 29883  df-va 29886  df-ba 29887  df-sm 29888  df-0v 29889  df-vs 29890  df-nmcv 29891  df-ims 29892  df-dip 29992  df-ssp 30013  df-ph 30104  df-cbn 30154  df-hnorm 30259  df-hba 30260  df-hvsub 30262  df-hlim 30263  df-hcau 30264  df-sh 30498  df-ch 30512  df-oc 30543  df-ch0 30544  df-shs 30599  df-span 30600  df-chj 30601  df-chsup 30602  df-pjh 30686  df-cv 31570  df-at 31629
This theorem is referenced by:  atcvati  31677
  Copyright terms: Public domain W3C validator