Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzunt Structured version   Visualization version   GIF version

Theorem fzunt 41062
Description: Union of two adjacent finite sets of sequential integers that share a common endpoint. (Suggested by NM, 21-Jul-2005.) (Contributed by RP, 14-Dec-2024.)
Assertion
Ref Expression
fzunt (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝑀𝑁)) → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))

Proof of Theorem fzunt
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 zre 12323 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
2 zre 12323 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
3 zre 12323 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4 zre 12323 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
5 simprl 768 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑗𝑀)) → 𝑗 ∈ ℝ)
6 simpl2 1191 . . . . . . . . . . . 12 (((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) → 𝑀 ∈ ℝ)
76adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑗𝑀)) → 𝑀 ∈ ℝ)
8 simpll3 1213 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑗𝑀)) → 𝑁 ∈ ℝ)
9 simprr 770 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑗𝑀)) → 𝑗𝑀)
10 simprr 770 . . . . . . . . . . . 12 (((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) → 𝑀𝑁)
1110adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑗𝑀)) → 𝑀𝑁)
125, 7, 8, 9, 11letrd 11132 . . . . . . . . . 10 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑗𝑀)) → 𝑗𝑁)
1312expr 457 . . . . . . . . 9 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → (𝑗𝑀𝑗𝑁))
1413anim2d 612 . . . . . . . 8 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → ((𝐾𝑗𝑗𝑀) → (𝐾𝑗𝑗𝑁)))
15 simpll1 1211 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑀𝑗)) → 𝐾 ∈ ℝ)
166adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑀𝑗)) → 𝑀 ∈ ℝ)
17 simprl 768 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑀𝑗)) → 𝑗 ∈ ℝ)
18 simprl 768 . . . . . . . . . . . 12 (((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) → 𝐾𝑀)
1918adantr 481 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑀𝑗)) → 𝐾𝑀)
20 simprr 770 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑀𝑗)) → 𝑀𝑗)
2115, 16, 17, 19, 20letrd 11132 . . . . . . . . . 10 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ (𝑗 ∈ ℝ ∧ 𝑀𝑗)) → 𝐾𝑗)
2221expr 457 . . . . . . . . 9 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → (𝑀𝑗𝐾𝑗))
2322anim1d 611 . . . . . . . 8 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → ((𝑀𝑗𝑗𝑁) → (𝐾𝑗𝑗𝑁)))
2414, 23jaod 856 . . . . . . 7 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) → (𝐾𝑗𝑗𝑁)))
25 orc 864 . . . . . . . . . . 11 (𝐾𝑗 → (𝐾𝑗𝑀𝑗))
26 orc 864 . . . . . . . . . . 11 (𝐾𝑗 → (𝐾𝑗𝑗𝑁))
2725, 26jca 512 . . . . . . . . . 10 (𝐾𝑗 → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
2827ad2antrl 725 . . . . . . . . 9 (((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
29 letric 11075 . . . . . . . . . . . . 13 ((𝑗 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑗𝑀𝑀𝑗))
3029ancoms 459 . . . . . . . . . . . 12 ((𝑀 ∈ ℝ ∧ 𝑗 ∈ ℝ) → (𝑗𝑀𝑀𝑗))
316, 30sylan 580 . . . . . . . . . . 11 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → (𝑗𝑀𝑀𝑗))
3231adantr 481 . . . . . . . . . 10 (((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝑀𝑀𝑗))
33 simprr 770 . . . . . . . . . . 11 (((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) ∧ (𝐾𝑗𝑗𝑁)) → 𝑗𝑁)
3433olcd 871 . . . . . . . . . 10 (((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝑀𝑗𝑁))
3532, 34jca 512 . . . . . . . . 9 (((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝑗𝑀𝑀𝑗) ∧ (𝑗𝑀𝑗𝑁)))
36 orddi 1007 . . . . . . . . 9 (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) ↔ (((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)) ∧ ((𝑗𝑀𝑀𝑗) ∧ (𝑗𝑀𝑗𝑁))))
3728, 35, 36sylanbrc 583 . . . . . . . 8 (((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)))
3837ex 413 . . . . . . 7 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → ((𝐾𝑗𝑗𝑁) → ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))))
3924, 38impbid 211 . . . . . 6 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℝ) → (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) ↔ (𝐾𝑗𝑗𝑁)))
404, 39sylan2 593 . . . . 5 ((((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) ∧ 𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)) ↔ (𝐾𝑗𝑗𝑁)))
4140pm5.32da 579 . . . 4 (((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝐾𝑀𝑀𝑁)) → ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
421, 2, 3, 41syl3anl 1414 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝑀𝑁)) → ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
43 simp1 1135 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ)
44 simp2 1136 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
45 elfz1 13244 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀)))
4643, 44, 45syl2anc 584 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀)))
47 3anass 1094 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑀) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)))
4846, 47bitrdi 287 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑀) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀))))
49 simp3 1137 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
50 elfz1 13244 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
5144, 49, 50syl2anc 584 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
52 3anass 1094 . . . . . . 7 ((𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))
5351, 52bitrdi 287 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
5448, 53orbi12d 916 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑗 ∈ (𝐾...𝑀) ∨ 𝑗 ∈ (𝑀...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))))
55 elun 4083 . . . . 5 (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ (𝐾...𝑀) ∨ 𝑗 ∈ (𝑀...𝑁)))
56 andi 1005 . . . . 5 ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁))) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑀)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
5754, 55, 563bitr4g 314 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)))))
5857adantr 481 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝑀𝑁)) → (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝑀) ∨ (𝑀𝑗𝑗𝑁)))))
59 elfz1 13244 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
6043, 49, 59syl2anc 584 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
61 3anass 1094 . . . . 5 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁)))
6260, 61bitrdi 287 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
6362adantr 481 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝑀𝑁)) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
6442, 58, 633bitr4d 311 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝑀𝑁)) → (𝑗 ∈ ((𝐾...𝑀) ∪ (𝑀...𝑁)) ↔ 𝑗 ∈ (𝐾...𝑁)))
6564eqrdv 2736 1 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝑀𝑁)) → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cun 3885   class class class wbr 5074  (class class class)co 7275  cr 10870  cle 11010  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-fz 13240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator