HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlej2 Structured version   Visualization version   GIF version

Theorem chlej2 31269
Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chlej2 (((𝐴C𝐵C𝐶C ) ∧ 𝐴𝐵) → (𝐶 𝐴) ⊆ (𝐶 𝐵))

Proof of Theorem chlej2
StepHypRef Expression
1 chsh 30982 . 2 (𝐴C𝐴S )
2 chsh 30982 . 2 (𝐵C𝐵S )
3 chsh 30982 . 2 (𝐶C𝐶S )
4 shlej2 31119 . 2 (((𝐴S𝐵S𝐶S ) ∧ 𝐴𝐵) → (𝐶 𝐴) ⊆ (𝐶 𝐵))
51, 2, 3, 4syl3anl 1412 1 (((𝐴C𝐵C𝐶C ) ∧ 𝐴𝐵) → (𝐶 𝐴) ⊆ (𝐶 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098  wss 3943  (class class class)co 7404   S csh 30686   C cch 30687   chj 30691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-hilex 30757  ax-hfvadd 30758  ax-hv0cl 30761  ax-hfvmul 30763  ax-hvmul0 30768  ax-hfi 30837  ax-his2 30841  ax-his3 30842
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-ltxr 11254  df-sh 30965  df-ch 30979  df-oc 31010  df-chj 31068
This theorem is referenced by:  mdsl0  32068  mdsl2bi  32081  mdslmd3i  32090  mdexchi  32093  atcvat3i  32154  mdsymlem5  32165
  Copyright terms: Public domain W3C validator