Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anim123i | Structured version Visualization version GIF version |
Description: Join antecedents and consequents with conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anim123i.1 | ⊢ (𝜑 → 𝜓) |
3anim123i.2 | ⊢ (𝜒 → 𝜃) |
3anim123i.3 | ⊢ (𝜏 → 𝜂) |
Ref | Expression |
---|---|
3anim123i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anim123i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | 3ad2ant1 1131 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜓) |
3 | 3anim123i.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
4 | 3 | 3ad2ant2 1132 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜃) |
5 | 3anim123i.3 | . . 3 ⊢ (𝜏 → 𝜂) | |
6 | 5 | 3ad2ant3 1133 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) |
7 | 2, 4, 6 | 3jca 1126 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → (𝜓 ∧ 𝜃 ∧ 𝜂)) |
Copyright terms: Public domain | W3C validator |