![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngridlmcl | Structured version Visualization version GIF version |
Description: A right ideal (which is a left ideal over the opposite ring) containing the zero element is closed under right-multiplication by elements of the full non-unital ring. (Contributed by AV, 19-Feb-2025.) |
Ref | Expression |
---|---|
rnglidlmcl.z | β’ 0 = (0gβπ ) |
rnglidlmcl.b | β’ π΅ = (Baseβπ ) |
rnglidlmcl.t | β’ Β· = (.rβπ ) |
rngridlmcl.u | β’ π = (LIdealβ(opprβπ )) |
Ref | Expression |
---|---|
rngridlmcl | β’ (((π β Rng β§ πΌ β π β§ 0 β πΌ) β§ (π β π΅ β§ π β πΌ)) β (π Β· π) β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnglidlmcl.b | . . 3 β’ π΅ = (Baseβπ ) | |
2 | rnglidlmcl.t | . . 3 β’ Β· = (.rβπ ) | |
3 | eqid 2726 | . . 3 β’ (opprβπ ) = (opprβπ ) | |
4 | eqid 2726 | . . 3 β’ (.rβ(opprβπ )) = (.rβ(opprβπ )) | |
5 | 1, 2, 3, 4 | opprmul 20239 | . 2 β’ (π(.rβ(opprβπ ))π) = (π Β· π) |
6 | 3 | opprrng 20247 | . . 3 β’ (π β Rng β (opprβπ ) β Rng) |
7 | id 22 | . . 3 β’ (πΌ β π β πΌ β π) | |
8 | rnglidlmcl.z | . . . . 5 β’ 0 = (0gβπ ) | |
9 | 8 | eleq1i 2818 | . . . 4 β’ ( 0 β πΌ β (0gβπ ) β πΌ) |
10 | 9 | biimpi 215 | . . 3 β’ ( 0 β πΌ β (0gβπ ) β πΌ) |
11 | eqid 2726 | . . . . 5 β’ (0gβπ ) = (0gβπ ) | |
12 | 3, 11 | oppr0 20251 | . . . 4 β’ (0gβπ ) = (0gβ(opprβπ )) |
13 | 3, 1 | opprbas 20243 | . . . 4 β’ π΅ = (Baseβ(opprβπ )) |
14 | rngridlmcl.u | . . . 4 β’ π = (LIdealβ(opprβπ )) | |
15 | 12, 13, 4, 14 | rnglidlmcl 21075 | . . 3 β’ ((((opprβπ ) β Rng β§ πΌ β π β§ (0gβπ ) β πΌ) β§ (π β π΅ β§ π β πΌ)) β (π(.rβ(opprβπ ))π) β πΌ) |
16 | 6, 7, 10, 15 | syl3anl 1412 | . 2 β’ (((π β Rng β§ πΌ β π β§ 0 β πΌ) β§ (π β π΅ β§ π β πΌ)) β (π(.rβ(opprβπ ))π) β πΌ) |
17 | 5, 16 | eqeltrrid 2832 | 1 β’ (((π β Rng β§ πΌ β π β§ 0 β πΌ) β§ (π β π΅ β§ π β πΌ)) β (π Β· π) β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 0gc0g 17394 Rngcrng 20057 opprcoppr 20235 LIdealclidl 21065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-oppr 20236 df-lss 20779 df-sra 21021 df-rgmod 21022 df-lidl 21067 |
This theorem is referenced by: rngqiprngghmlem1 21140 rngqiprngimf 21150 |
Copyright terms: Public domain | W3C validator |