Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pridlc2 Structured version   Visualization version   GIF version

Theorem pridlc2 37578
Description: Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
ispridlc.1 𝐺 = (1st β€˜π‘…)
ispridlc.2 𝐻 = (2nd β€˜π‘…)
ispridlc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
pridlc2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ (𝑋 βˆ– 𝑃) ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ 𝐡 ∈ 𝑃)

Proof of Theorem pridlc2
StepHypRef Expression
1 eldifn 4128 . . . 4 (𝐴 ∈ (𝑋 βˆ– 𝑃) β†’ Β¬ 𝐴 ∈ 𝑃)
213ad2ant1 1130 . . 3 ((𝐴 ∈ (𝑋 βˆ– 𝑃) ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃) β†’ Β¬ 𝐴 ∈ 𝑃)
32adantl 480 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ (𝑋 βˆ– 𝑃) ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ Β¬ 𝐴 ∈ 𝑃)
4 eldifi 4127 . . 3 (𝐴 ∈ (𝑋 βˆ– 𝑃) β†’ 𝐴 ∈ 𝑋)
5 ispridlc.1 . . . . 5 𝐺 = (1st β€˜π‘…)
6 ispridlc.2 . . . . 5 𝐻 = (2nd β€˜π‘…)
7 ispridlc.3 . . . . 5 𝑋 = ran 𝐺
85, 6, 7pridlc 37577 . . . 4 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ (𝐴 ∈ 𝑃 ∨ 𝐡 ∈ 𝑃))
98ord 862 . . 3 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ (Β¬ 𝐴 ∈ 𝑃 β†’ 𝐡 ∈ 𝑃))
104, 9syl3anr1 1413 . 2 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ (𝑋 βˆ– 𝑃) ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ (Β¬ 𝐴 ∈ 𝑃 β†’ 𝐡 ∈ 𝑃))
113, 10mpd 15 1 (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdlβ€˜π‘…)) ∧ (𝐴 ∈ (𝑋 βˆ– 𝑃) ∧ 𝐡 ∈ 𝑋 ∧ (𝐴𝐻𝐡) ∈ 𝑃)) β†’ 𝐡 ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   βˆ– cdif 3946  ran crn 5683  β€˜cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998  CRingOpsccring 37499  PrIdlcpridl 37514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-grpo 30323  df-gid 30324  df-ginv 30325  df-ablo 30375  df-ass 37349  df-exid 37351  df-mgmOLD 37355  df-sgrOLD 37367  df-mndo 37373  df-rngo 37401  df-com2 37496  df-crngo 37500  df-idl 37516  df-pridl 37517  df-igen 37566
This theorem is referenced by:  pridlc3  37579
  Copyright terms: Public domain W3C validator