Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem2 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem2 47510
Description: Lemma 2 for prmdvdsfmtnof1 47512. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
prmdvdsfmtnof1lem2 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))

Proof of Theorem prmdvdsfmtnof1lem2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmtnorn 47459 . 2 (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)
2 fmtnorn 47459 . 2 (𝐺 ∈ ran FermatNo ↔ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺)
3 2a1 28 . . . . . . . 8 (𝐹 = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
432a1d 26 . . . . . . 7 (𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
5 fmtnonn 47456 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
65ad2antrl 728 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑛) ∈ ℕ)
76adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑛) ∈ ℕ)
8 eleq1 2827 . . . . . . . . . . 11 ((FermatNo‘𝑛) = 𝐹 → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
98ad2antll 729 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
107, 9mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐹 ∈ ℕ)
11 fmtnonn 47456 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) ∈ ℕ)
1211ad2antll 729 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑚) ∈ ℕ)
1312adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑚) ∈ ℕ)
14 eleq1 2827 . . . . . . . . . . 11 ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1514ad2antrl 728 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1613, 15mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐺 ∈ ℕ)
17 simpll 767 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛 ∈ ℕ0)
18 simplr 769 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑚 ∈ ℕ0)
19 fveq2 6907 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (FermatNo‘𝑛) = (FermatNo‘𝑚))
2019con3i 154 . . . . . . . . . . . . . . . . 17 (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ¬ 𝑛 = 𝑚)
2120adantl 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ¬ 𝑛 = 𝑚)
2221neqned 2945 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛𝑚)
23 goldbachth 47472 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0𝑛𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2417, 18, 22, 23syl3anc 1370 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2524ex 412 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1))
26 eqeq12 2752 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ 𝐹 = 𝐺))
2726notbid 318 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ¬ 𝐹 = 𝐺))
28 oveq12 7440 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = (𝐹 gcd 𝐺))
2928eqeq1d 2737 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1 ↔ (𝐹 gcd 𝐺) = 1))
3027, 29imbi12d 344 . . . . . . . . . . . . . 14 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3130ancoms 458 . . . . . . . . . . . . 13 (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3225, 31syl5ibcom 245 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3332com23 86 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ 𝐹 = 𝐺 → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1)))
3433impcom 407 . . . . . . . . . 10 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1))
3534imp 406 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (𝐹 gcd 𝐺) = 1)
36 prmnn 16708 . . . . . . . . . . . 12 (𝐼 ∈ ℙ → 𝐼 ∈ ℕ)
37 coprmdvds1 16686 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
3837imp 406 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
3936, 38syl3anr1 1415 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
40 eleq1 2827 . . . . . . . . . . . . . . . 16 (𝐼 = 1 → (𝐼 ∈ ℙ ↔ 1 ∈ ℙ))
41 1nprm 16713 . . . . . . . . . . . . . . . . 17 ¬ 1 ∈ ℙ
4241pm2.21i 119 . . . . . . . . . . . . . . . 16 (1 ∈ ℙ → 𝐹 = 𝐺)
4340, 42biimtrdi 253 . . . . . . . . . . . . . . 15 (𝐼 = 1 → (𝐼 ∈ ℙ → 𝐹 = 𝐺))
4443com12 32 . . . . . . . . . . . . . 14 (𝐼 ∈ ℙ → (𝐼 = 1 → 𝐹 = 𝐺))
4544a1d 25 . . . . . . . . . . . . 13 (𝐼 ∈ ℙ → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
46453ad2ant1 1132 . . . . . . . . . . . 12 ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
4746impcom 407 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → (𝐼 = 1 → 𝐹 = 𝐺))
4839, 47mpd 15 . . . . . . . . . 10 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐹 = 𝐺)
4948ex 412 . . . . . . . . 9 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5010, 16, 35, 49syl3anc 1370 . . . . . . . 8 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5150exp43 436 . . . . . . 7 𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
524, 51pm2.61i 182 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5352rexlimdva 3153 . . . . 5 (𝑛 ∈ ℕ0 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5453com23 86 . . . 4 (𝑛 ∈ ℕ0 → ((FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5554rexlimiv 3146 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
5655imp 406 . 2 ((∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 ∧ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
571, 2, 56syl2anb 598 1 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068   class class class wbr 5148  ran crn 5690  cfv 6563  (class class class)co 7431  1c1 11154  cn 12264  0cn0 12524  cdvds 16287   gcd cgcd 16528  cprime 16705  FermatNocfmtno 47452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-dvds 16288  df-gcd 16529  df-prm 16706  df-fmtno 47453
This theorem is referenced by:  prmdvdsfmtnof1  47512
  Copyright terms: Public domain W3C validator