Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem2 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem2 47547
Description: Lemma 2 for prmdvdsfmtnof1 47549. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
prmdvdsfmtnof1lem2 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))

Proof of Theorem prmdvdsfmtnof1lem2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmtnorn 47496 . 2 (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)
2 fmtnorn 47496 . 2 (𝐺 ∈ ran FermatNo ↔ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺)
3 2a1 28 . . . . . . . 8 (𝐹 = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
432a1d 26 . . . . . . 7 (𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
5 fmtnonn 47493 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
65ad2antrl 728 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑛) ∈ ℕ)
76adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑛) ∈ ℕ)
8 eleq1 2822 . . . . . . . . . . 11 ((FermatNo‘𝑛) = 𝐹 → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
98ad2antll 729 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
107, 9mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐹 ∈ ℕ)
11 fmtnonn 47493 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) ∈ ℕ)
1211ad2antll 729 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑚) ∈ ℕ)
1312adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑚) ∈ ℕ)
14 eleq1 2822 . . . . . . . . . . 11 ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1514ad2antrl 728 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1613, 15mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐺 ∈ ℕ)
17 simpll 766 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛 ∈ ℕ0)
18 simplr 768 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑚 ∈ ℕ0)
19 fveq2 6875 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (FermatNo‘𝑛) = (FermatNo‘𝑚))
2019con3i 154 . . . . . . . . . . . . . . . . 17 (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ¬ 𝑛 = 𝑚)
2120adantl 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ¬ 𝑛 = 𝑚)
2221neqned 2939 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛𝑚)
23 goldbachth 47509 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0𝑛𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2417, 18, 22, 23syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2524ex 412 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1))
26 eqeq12 2752 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ 𝐹 = 𝐺))
2726notbid 318 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ¬ 𝐹 = 𝐺))
28 oveq12 7412 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = (𝐹 gcd 𝐺))
2928eqeq1d 2737 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1 ↔ (𝐹 gcd 𝐺) = 1))
3027, 29imbi12d 344 . . . . . . . . . . . . . 14 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3130ancoms 458 . . . . . . . . . . . . 13 (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3225, 31syl5ibcom 245 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3332com23 86 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ 𝐹 = 𝐺 → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1)))
3433impcom 407 . . . . . . . . . 10 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1))
3534imp 406 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (𝐹 gcd 𝐺) = 1)
36 prmnn 16691 . . . . . . . . . . . 12 (𝐼 ∈ ℙ → 𝐼 ∈ ℕ)
37 coprmdvds1 16669 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
3837imp 406 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
3936, 38syl3anr1 1418 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
40 eleq1 2822 . . . . . . . . . . . . . . . 16 (𝐼 = 1 → (𝐼 ∈ ℙ ↔ 1 ∈ ℙ))
41 1nprm 16696 . . . . . . . . . . . . . . . . 17 ¬ 1 ∈ ℙ
4241pm2.21i 119 . . . . . . . . . . . . . . . 16 (1 ∈ ℙ → 𝐹 = 𝐺)
4340, 42biimtrdi 253 . . . . . . . . . . . . . . 15 (𝐼 = 1 → (𝐼 ∈ ℙ → 𝐹 = 𝐺))
4443com12 32 . . . . . . . . . . . . . 14 (𝐼 ∈ ℙ → (𝐼 = 1 → 𝐹 = 𝐺))
4544a1d 25 . . . . . . . . . . . . 13 (𝐼 ∈ ℙ → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
46453ad2ant1 1133 . . . . . . . . . . . 12 ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
4746impcom 407 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → (𝐼 = 1 → 𝐹 = 𝐺))
4839, 47mpd 15 . . . . . . . . . 10 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐹 = 𝐺)
4948ex 412 . . . . . . . . 9 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5010, 16, 35, 49syl3anc 1373 . . . . . . . 8 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5150exp43 436 . . . . . . 7 𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
524, 51pm2.61i 182 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5352rexlimdva 3141 . . . . 5 (𝑛 ∈ ℕ0 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5453com23 86 . . . 4 (𝑛 ∈ ℕ0 → ((FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5554rexlimiv 3134 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
5655imp 406 . 2 ((∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 ∧ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
571, 2, 56syl2anb 598 1 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wrex 3060   class class class wbr 5119  ran crn 5655  cfv 6530  (class class class)co 7403  1c1 11128  cn 12238  0cn0 12499  cdvds 16270   gcd cgcd 16511  cprime 16688  FermatNocfmtno 47489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-prod 15918  df-dvds 16271  df-gcd 16512  df-prm 16689  df-fmtno 47490
This theorem is referenced by:  prmdvdsfmtnof1  47549
  Copyright terms: Public domain W3C validator