Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem2 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem2 47712
Description: Lemma 2 for prmdvdsfmtnof1 47714. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
prmdvdsfmtnof1lem2 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))

Proof of Theorem prmdvdsfmtnof1lem2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmtnorn 47661 . 2 (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)
2 fmtnorn 47661 . 2 (𝐺 ∈ ran FermatNo ↔ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺)
3 2a1 28 . . . . . . . 8 (𝐹 = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
432a1d 26 . . . . . . 7 (𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
5 fmtnonn 47658 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
65ad2antrl 728 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑛) ∈ ℕ)
76adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑛) ∈ ℕ)
8 eleq1 2821 . . . . . . . . . . 11 ((FermatNo‘𝑛) = 𝐹 → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
98ad2antll 729 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
107, 9mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐹 ∈ ℕ)
11 fmtnonn 47658 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) ∈ ℕ)
1211ad2antll 729 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑚) ∈ ℕ)
1312adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑚) ∈ ℕ)
14 eleq1 2821 . . . . . . . . . . 11 ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1514ad2antrl 728 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1613, 15mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐺 ∈ ℕ)
17 simpll 766 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛 ∈ ℕ0)
18 simplr 768 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑚 ∈ ℕ0)
19 fveq2 6830 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (FermatNo‘𝑛) = (FermatNo‘𝑚))
2019con3i 154 . . . . . . . . . . . . . . . . 17 (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ¬ 𝑛 = 𝑚)
2120adantl 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ¬ 𝑛 = 𝑚)
2221neqned 2936 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛𝑚)
23 goldbachth 47674 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0𝑛𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2417, 18, 22, 23syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2524ex 412 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1))
26 eqeq12 2750 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ 𝐹 = 𝐺))
2726notbid 318 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ¬ 𝐹 = 𝐺))
28 oveq12 7363 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = (𝐹 gcd 𝐺))
2928eqeq1d 2735 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1 ↔ (𝐹 gcd 𝐺) = 1))
3027, 29imbi12d 344 . . . . . . . . . . . . . 14 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3130ancoms 458 . . . . . . . . . . . . 13 (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3225, 31syl5ibcom 245 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3332com23 86 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ 𝐹 = 𝐺 → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1)))
3433impcom 407 . . . . . . . . . 10 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1))
3534imp 406 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (𝐹 gcd 𝐺) = 1)
36 prmnn 16589 . . . . . . . . . . . 12 (𝐼 ∈ ℙ → 𝐼 ∈ ℕ)
37 coprmdvds1 16567 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
3837imp 406 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
3936, 38syl3anr1 1418 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
40 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝐼 = 1 → (𝐼 ∈ ℙ ↔ 1 ∈ ℙ))
41 1nprm 16594 . . . . . . . . . . . . . . . . 17 ¬ 1 ∈ ℙ
4241pm2.21i 119 . . . . . . . . . . . . . . . 16 (1 ∈ ℙ → 𝐹 = 𝐺)
4340, 42biimtrdi 253 . . . . . . . . . . . . . . 15 (𝐼 = 1 → (𝐼 ∈ ℙ → 𝐹 = 𝐺))
4443com12 32 . . . . . . . . . . . . . 14 (𝐼 ∈ ℙ → (𝐼 = 1 → 𝐹 = 𝐺))
4544a1d 25 . . . . . . . . . . . . 13 (𝐼 ∈ ℙ → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
46453ad2ant1 1133 . . . . . . . . . . . 12 ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
4746impcom 407 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → (𝐼 = 1 → 𝐹 = 𝐺))
4839, 47mpd 15 . . . . . . . . . 10 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐹 = 𝐺)
4948ex 412 . . . . . . . . 9 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5010, 16, 35, 49syl3anc 1373 . . . . . . . 8 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5150exp43 436 . . . . . . 7 𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
524, 51pm2.61i 182 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5352rexlimdva 3134 . . . . 5 (𝑛 ∈ ℕ0 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5453com23 86 . . . 4 (𝑛 ∈ ℕ0 → ((FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5554rexlimiv 3127 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
5655imp 406 . 2 ((∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 ∧ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
571, 2, 56syl2anb 598 1 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5095  ran crn 5622  cfv 6488  (class class class)co 7354  1c1 11016  cn 12134  0cn0 12390  cdvds 16167   gcd cgcd 16409  cprime 16586  FermatNocfmtno 47654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-prod 15815  df-dvds 16168  df-gcd 16410  df-prm 16587  df-fmtno 47655
This theorem is referenced by:  prmdvdsfmtnof1  47714
  Copyright terms: Public domain W3C validator