Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmdvdsfmtnof1lem2 Structured version   Visualization version   GIF version

Theorem prmdvdsfmtnof1lem2 47566
Description: Lemma 2 for prmdvdsfmtnof1 47568. (Contributed by AV, 3-Aug-2021.)
Assertion
Ref Expression
prmdvdsfmtnof1lem2 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))

Proof of Theorem prmdvdsfmtnof1lem2
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmtnorn 47515 . 2 (𝐹 ∈ ran FermatNo ↔ ∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹)
2 fmtnorn 47515 . 2 (𝐺 ∈ ran FermatNo ↔ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺)
3 2a1 28 . . . . . . . 8 (𝐹 = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
432a1d 26 . . . . . . 7 (𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
5 fmtnonn 47512 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
65ad2antrl 728 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑛) ∈ ℕ)
76adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑛) ∈ ℕ)
8 eleq1 2823 . . . . . . . . . . 11 ((FermatNo‘𝑛) = 𝐹 → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
98ad2antll 729 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑛) ∈ ℕ ↔ 𝐹 ∈ ℕ))
107, 9mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐹 ∈ ℕ)
11 fmtnonn 47512 . . . . . . . . . . . 12 (𝑚 ∈ ℕ0 → (FermatNo‘𝑚) ∈ ℕ)
1211ad2antll 729 . . . . . . . . . . 11 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (FermatNo‘𝑚) ∈ ℕ)
1312adantr 480 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (FermatNo‘𝑚) ∈ ℕ)
14 eleq1 2823 . . . . . . . . . . 11 ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1514ad2antrl 728 . . . . . . . . . 10 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((FermatNo‘𝑚) ∈ ℕ ↔ 𝐺 ∈ ℕ))
1613, 15mpbid 232 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → 𝐺 ∈ ℕ)
17 simpll 766 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛 ∈ ℕ0)
18 simplr 768 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑚 ∈ ℕ0)
19 fveq2 6881 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (FermatNo‘𝑛) = (FermatNo‘𝑚))
2019con3i 154 . . . . . . . . . . . . . . . . 17 (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ¬ 𝑛 = 𝑚)
2120adantl 481 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ¬ 𝑛 = 𝑚)
2221neqned 2940 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → 𝑛𝑚)
23 goldbachth 47528 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0𝑛𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2417, 18, 22, 23syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) ∧ ¬ (FermatNo‘𝑛) = (FermatNo‘𝑚)) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1)
2524ex 412 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1))
26 eqeq12 2753 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ 𝐹 = 𝐺))
2726notbid 318 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) ↔ ¬ 𝐹 = 𝐺))
28 oveq12 7419 . . . . . . . . . . . . . . . 16 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = (𝐹 gcd 𝐺))
2928eqeq1d 2738 . . . . . . . . . . . . . . 15 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → (((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1 ↔ (𝐹 gcd 𝐺) = 1))
3027, 29imbi12d 344 . . . . . . . . . . . . . 14 (((FermatNo‘𝑛) = 𝐹 ∧ (FermatNo‘𝑚) = 𝐺) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3130ancoms 458 . . . . . . . . . . . . 13 (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → ((¬ (FermatNo‘𝑛) = (FermatNo‘𝑚) → ((FermatNo‘𝑛) gcd (FermatNo‘𝑚)) = 1) ↔ (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3225, 31syl5ibcom 245 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (¬ 𝐹 = 𝐺 → (𝐹 gcd 𝐺) = 1)))
3332com23 86 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → (¬ 𝐹 = 𝐺 → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1)))
3433impcom 407 . . . . . . . . . 10 ((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) → (((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹) → (𝐹 gcd 𝐺) = 1))
3534imp 406 . . . . . . . . 9 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → (𝐹 gcd 𝐺) = 1)
36 prmnn 16698 . . . . . . . . . . . 12 (𝐼 ∈ ℙ → 𝐼 ∈ ℕ)
37 coprmdvds1 16676 . . . . . . . . . . . . 13 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺) → 𝐼 = 1))
3837imp 406 . . . . . . . . . . . 12 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℕ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
3936, 38syl3anr1 1418 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐼 = 1)
40 eleq1 2823 . . . . . . . . . . . . . . . 16 (𝐼 = 1 → (𝐼 ∈ ℙ ↔ 1 ∈ ℙ))
41 1nprm 16703 . . . . . . . . . . . . . . . . 17 ¬ 1 ∈ ℙ
4241pm2.21i 119 . . . . . . . . . . . . . . . 16 (1 ∈ ℙ → 𝐹 = 𝐺)
4340, 42biimtrdi 253 . . . . . . . . . . . . . . 15 (𝐼 = 1 → (𝐼 ∈ ℙ → 𝐹 = 𝐺))
4443com12 32 . . . . . . . . . . . . . 14 (𝐼 ∈ ℙ → (𝐼 = 1 → 𝐹 = 𝐺))
4544a1d 25 . . . . . . . . . . . . 13 (𝐼 ∈ ℙ → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
46453ad2ant1 1133 . . . . . . . . . . . 12 ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → (𝐼 = 1 → 𝐹 = 𝐺)))
4746impcom 407 . . . . . . . . . . 11 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → (𝐼 = 1 → 𝐹 = 𝐺))
4839, 47mpd 15 . . . . . . . . . 10 (((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) ∧ (𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺)) → 𝐹 = 𝐺)
4948ex 412 . . . . . . . . 9 ((𝐹 ∈ ℕ ∧ 𝐺 ∈ ℕ ∧ (𝐹 gcd 𝐺) = 1) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5010, 16, 35, 49syl3anc 1373 . . . . . . . 8 (((¬ 𝐹 = 𝐺 ∧ (𝑛 ∈ ℕ0𝑚 ∈ ℕ0)) ∧ ((FermatNo‘𝑚) = 𝐺 ∧ (FermatNo‘𝑛) = 𝐹)) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
5150exp43 436 . . . . . . 7 𝐹 = 𝐺 → ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))))
524, 51pm2.61i 182 . . . . . 6 ((𝑛 ∈ ℕ0𝑚 ∈ ℕ0) → ((FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5352rexlimdva 3142 . . . . 5 (𝑛 ∈ ℕ0 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((FermatNo‘𝑛) = 𝐹 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5453com23 86 . . . 4 (𝑛 ∈ ℕ0 → ((FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))))
5554rexlimiv 3135 . . 3 (∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 → (∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺 → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺)))
5655imp 406 . 2 ((∃𝑛 ∈ ℕ0 (FermatNo‘𝑛) = 𝐹 ∧ ∃𝑚 ∈ ℕ0 (FermatNo‘𝑚) = 𝐺) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
571, 2, 56syl2anb 598 1 ((𝐹 ∈ ran FermatNo ∧ 𝐺 ∈ ran FermatNo) → ((𝐼 ∈ ℙ ∧ 𝐼𝐹𝐼𝐺) → 𝐹 = 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  ran crn 5660  cfv 6536  (class class class)co 7410  1c1 11135  cn 12245  0cn0 12506  cdvds 16277   gcd cgcd 16518  cprime 16695  FermatNocfmtno 47508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925  df-dvds 16278  df-gcd 16519  df-prm 16696  df-fmtno 47509
This theorem is referenced by:  prmdvdsfmtnof1  47568
  Copyright terms: Public domain W3C validator