Step | Hyp | Ref
| Expression |
1 | | simp1rl 1238 |
. . . . . 6
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩) |
2 | | simp2rl 1242 |
. . . . . 6
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐶 Btwn ⟨𝐴, 𝑑⟩) |
3 | 1, 2 | jca 512 |
. . . . 5
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑑⟩)) |
4 | 3 | adantl 482 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑑⟩)) |
5 | | simp11 1203 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
6 | | simp12 1204 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
7 | | simp13 1205 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
8 | | simp21 1206 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
9 | | simp3l 1201 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝑑 ∈ (𝔼‘𝑁)) |
10 | | btwnexch3 34980 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑑⟩) → 𝐶 Btwn ⟨𝐵, 𝑑⟩)) |
11 | 5, 6, 7, 8, 9, 10 | syl122anc 1379 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑑⟩) → 𝐶 Btwn ⟨𝐵, 𝑑⟩)) |
12 | 11 | adantr 481 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑑⟩) → 𝐶 Btwn ⟨𝐵, 𝑑⟩)) |
13 | 4, 12 | mpd 15 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → 𝐶 Btwn ⟨𝐵, 𝑑⟩) |
14 | | simp3lr 1245 |
. . . . . 6
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) |
15 | 14 | adantl 482 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) |
16 | | simp23 1208 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝑐 ∈ (𝔼‘𝑁)) |
17 | | simp3r 1202 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝑏 ∈ (𝔼‘𝑁)) |
18 | | cgrcomlr 34958 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩ ↔ ⟨𝑏, 𝑐⟩Cgr⟨𝐵, 𝐶⟩)) |
19 | 5, 16, 17, 8, 7, 18 | syl122anc 1379 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → (⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩ ↔ ⟨𝑏, 𝑐⟩Cgr⟨𝐵, 𝐶⟩)) |
20 | | cgrcom 34950 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨𝑏, 𝑐⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩)) |
21 | 5, 17, 16, 7, 8, 20 | syl122anc 1379 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → (⟨𝑏, 𝑐⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩)) |
22 | 19, 21 | bitrd 278 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → (⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩)) |
23 | 22 | adantr 481 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩)) |
24 | 15, 23 | mpbid 231 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩) |
25 | | 3simpa 1148 |
. . . . . 6
⊢ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) |
26 | 25 | anim1i 615 |
. . . . 5
⊢ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) → ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩))) |
27 | | btwnconn1lem3 35049 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐵, 𝑑⟩Cgr⟨𝑏, 𝐷⟩) |
28 | 26, 27 | syl3anr1 1416 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐵, 𝑑⟩Cgr⟨𝑏, 𝐷⟩) |
29 | | simp22 1207 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
30 | | simp2rr 1243 |
. . . . . 6
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩) |
31 | 30 | adantl 482 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩) |
32 | | simp2lr 1241 |
. . . . . . 7
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) |
33 | 32 | adantl 482 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) |
34 | 5, 29, 16, 8, 29, 33 | cgrcomland 34959 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝑐, 𝐷⟩Cgr⟨𝐶, 𝐷⟩) |
35 | 5, 8, 9, 16, 29, 8, 29, 31, 34 | cgrtr3and 34955 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐶, 𝑑⟩Cgr⟨𝑐, 𝐷⟩) |
36 | | brcgr3 35006 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑑 ∈ (𝔼‘𝑁)) ∧ (𝑏 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ↔ (⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑏, 𝐷⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑐, 𝐷⟩))) |
37 | 5, 7, 8, 9, 17, 16, 29, 36 | syl133anc 1393 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → (⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ↔ (⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑏, 𝐷⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑐, 𝐷⟩))) |
38 | 37 | adantr 481 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ↔ (⟨𝐵, 𝐶⟩Cgr⟨𝑏, 𝑐⟩ ∧ ⟨𝐵, 𝑑⟩Cgr⟨𝑏, 𝐷⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝑐, 𝐷⟩))) |
39 | 24, 28, 35, 38 | mpbir3and 1342 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩) |
40 | | simpl 483 |
. . . . . . 7
⊢ ((𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑑 ∈ (𝔼‘𝑁)) |
41 | | simpr 485 |
. . . . . . 7
⊢ ((𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) → 𝑏 ∈ (𝔼‘𝑁)) |
42 | 40, 41, 41 | 3jca 1128 |
. . . . . 6
⊢ ((𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) → (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) |
43 | 42 | 3anim3i 1154 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) |
44 | 26 | 3anim1i 1152 |
. . . . 5
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) |
45 | | btwnconn1lem1 35047 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩) |
46 | 43, 44, 45 | syl2an 596 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩) |
47 | 5, 8, 16 | cgrrflx2d 34944 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩) |
48 | 47 | adantr 481 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩) |
49 | 46, 48 | jca 512 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩ ∧ ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩)) |
50 | 13, 39, 49 | 3jca 1128 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (𝐶 Btwn ⟨𝐵, 𝑑⟩ ∧ ⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ∧ (⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩ ∧ ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩))) |
51 | | simp1l2 1267 |
. . 3
⊢ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩))) → 𝐵 ≠ 𝐶) |
52 | 51 | adantl 482 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → 𝐵 ≠ 𝐶) |
53 | | brofs2 35037 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (⟨⟨𝐵, 𝐶⟩, ⟨𝑑, 𝑐⟩⟩ OuterFiveSeg ⟨⟨𝑏, 𝑐⟩, ⟨𝐷, 𝐶⟩⟩ ↔ (𝐶 Btwn ⟨𝐵, 𝑑⟩ ∧ ⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ∧ (⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩ ∧ ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩)))) |
54 | 53 | anbi1d 630 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨⟨𝐵, 𝐶⟩, ⟨𝑑, 𝑐⟩⟩ OuterFiveSeg ⟨⟨𝑏, 𝑐⟩, ⟨𝐷, 𝐶⟩⟩ ∧ 𝐵 ≠ 𝐶) ↔ ((𝐶 Btwn ⟨𝐵, 𝑑⟩ ∧ ⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ∧ (⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩ ∧ ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩)) ∧ 𝐵 ≠ 𝐶))) |
55 | | 5segofs 34966 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((⟨⟨𝐵, 𝐶⟩, ⟨𝑑, 𝑐⟩⟩ OuterFiveSeg ⟨⟨𝑏, 𝑐⟩, ⟨𝐷, 𝐶⟩⟩ ∧ 𝐵 ≠ 𝐶) → ⟨𝑑, 𝑐⟩Cgr⟨𝐷, 𝐶⟩)) |
56 | 54, 55 | sylbird 259 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)) ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (((𝐶 Btwn ⟨𝐵, 𝑑⟩ ∧ ⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ∧ (⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩ ∧ ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩)) ∧ 𝐵 ≠ 𝐶) → ⟨𝑑, 𝑐⟩Cgr⟨𝐷, 𝐶⟩)) |
57 | 5, 7, 8, 9, 16, 17, 16, 29, 8, 56 | syl333anc 1402 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) → (((𝐶 Btwn ⟨𝐵, 𝑑⟩ ∧ ⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ∧ (⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩ ∧ ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩)) ∧ 𝐵 ≠ 𝐶) → ⟨𝑑, 𝑐⟩Cgr⟨𝐷, 𝐶⟩)) |
58 | 57 | adantr 481 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → (((𝐶 Btwn ⟨𝐵, 𝑑⟩ ∧ ⟨𝐵, ⟨𝐶, 𝑑⟩⟩Cgr3⟨𝑏, ⟨𝑐, 𝐷⟩⟩ ∧ (⟨𝐵, 𝑐⟩Cgr⟨𝑏, 𝐶⟩ ∧ ⟨𝐶, 𝑐⟩Cgr⟨𝑐, 𝐶⟩)) ∧ 𝐵 ≠ 𝐶) → ⟨𝑑, 𝑐⟩Cgr⟨𝐷, 𝐶⟩)) |
59 | 50, 52, 58 | mp2and 697 |
1
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝐴, 𝐷⟩)) ∧ ((𝐷 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐷, 𝑐⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑑⟩ ∧ ⟨𝐶, 𝑑⟩Cgr⟨𝐶, 𝐷⟩)) ∧ ((𝑐 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑐, 𝑏⟩Cgr⟨𝐶, 𝐵⟩) ∧ (𝑑 Btwn ⟨𝐴, 𝑏⟩ ∧ ⟨𝑑, 𝑏⟩Cgr⟨𝐷, 𝐵⟩)))) → ⟨𝑑, 𝑐⟩Cgr⟨𝐷, 𝐶⟩) |