MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1149
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1148 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by:  syl3an1  1160  syl3anl1  1409  syl3anr1  1413  fnsuppres  8194  dif1en  9187  elfiun  9463  elioc2  13432  elico2  13433  elicc2  13434  dvdsleabs2  16306  subrngringnsg  20528  cphipval  25256  spthonpthon  29682  uhgrwkspth  29686  usgr2wlkspth  29690  upgriseupth  30134  cm2j  31547  bnj544  34749  btwnconn1lem4  35924  relowlssretop  37080  dalem53  39434  dalem54  39435  paddasslem14  39542  mzpcong  42664  itscnhlc0xyqsol  48186
  Copyright terms: Public domain W3C validator