MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1151
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1150 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  syl3an1  1162  syl3anl1  1411  syl3anr1  1415  fnsuppres  8007  elfiun  9189  elioc2  13142  elico2  13143  elicc2  13144  dvdsleabs2  16021  cphipval  24407  spthonpthon  28119  uhgrwkspth  28123  usgr2wlkspth  28127  upgriseupth  28571  cm2j  29982  bnj544  32874  btwnconn1lem4  34392  relowlssretop  35534  dalem53  37739  dalem54  37740  paddasslem14  37847  mzpcong  40794  itscnhlc0xyqsol  46111
  Copyright terms: Public domain W3C validator