MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1151 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an1  1163  syl3anl1  1414  syl3anr1  1418  fnsuppres  8121  dif1en  9071  elfiun  9314  elioc2  13309  elico2  13310  elicc2  13311  dvdsleabs2  16223  subrngringnsg  20468  cphipval  25170  spthonpthon  29729  uhgrwkspth  29733  usgr2wlkspth  29737  upgriseupth  30187  cm2j  31600  bnj544  34906  btwnconn1lem4  36134  relowlssretop  37407  dalem53  39834  dalem54  39835  paddasslem14  39942  mzpcong  43075  itscnhlc0xyqsol  48876
  Copyright terms: Public domain W3C validator