Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
4 | 1, 2, 3 | 3anim123i 1150 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: syl3an1 1162 syl3anl1 1411 syl3anr1 1415 fnsuppres 8007 elfiun 9189 elioc2 13142 elico2 13143 elicc2 13144 dvdsleabs2 16021 cphipval 24407 spthonpthon 28119 uhgrwkspth 28123 usgr2wlkspth 28127 upgriseupth 28571 cm2j 29982 bnj544 32874 btwnconn1lem4 34392 relowlssretop 35534 dalem53 37739 dalem54 37740 paddasslem14 37847 mzpcong 40794 itscnhlc0xyqsol 46111 |
Copyright terms: Public domain | W3C validator |