![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
4 | 1, 2, 3 | 3anim123i 1150 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl3an1 1162 syl3anl1 1411 syl3anr1 1415 fnsuppres 8215 dif1en 9199 elfiun 9468 elioc2 13447 elico2 13448 elicc2 13449 dvdsleabs2 16346 subrngringnsg 20570 cphipval 25291 spthonpthon 29784 uhgrwkspth 29788 usgr2wlkspth 29792 upgriseupth 30236 cm2j 31649 bnj544 34887 btwnconn1lem4 36072 relowlssretop 37346 dalem53 39708 dalem54 39709 paddasslem14 39816 mzpcong 42961 itscnhlc0xyqsol 48615 |
Copyright terms: Public domain | W3C validator |