MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1151 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  syl3an1  1163  syl3anl1  1412  syl3anr1  1416  fnsuppres  8232  dif1en  9226  elfiun  9499  elioc2  13470  elico2  13471  elicc2  13472  dvdsleabs2  16360  subrngringnsg  20579  cphipval  25296  spthonpthon  29787  uhgrwkspth  29791  usgr2wlkspth  29795  upgriseupth  30239  cm2j  31652  bnj544  34870  btwnconn1lem4  36054  relowlssretop  37329  dalem53  39682  dalem54  39683  paddasslem14  39790  mzpcong  42929  itscnhlc0xyqsol  48499
  Copyright terms: Public domain W3C validator