MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1151 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an1  1163  syl3anl1  1414  syl3anr1  1418  fnsuppres  8173  dif1en  9130  elfiun  9388  elioc2  13377  elico2  13378  elicc2  13379  dvdsleabs2  16289  subrngringnsg  20469  cphipval  25150  spthonpthon  29688  uhgrwkspth  29692  usgr2wlkspth  29696  upgriseupth  30143  cm2j  31556  bnj544  34891  btwnconn1lem4  36085  relowlssretop  37358  dalem53  39726  dalem54  39727  paddasslem14  39834  mzpcong  42968  itscnhlc0xyqsol  48758
  Copyright terms: Public domain W3C validator