| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an1 1163 syl3anl1 1414 syl3anr1 1418 fnsuppres 8173 dif1en 9130 elfiun 9388 elioc2 13377 elico2 13378 elicc2 13379 dvdsleabs2 16289 subrngringnsg 20469 cphipval 25150 spthonpthon 29688 uhgrwkspth 29692 usgr2wlkspth 29696 upgriseupth 30143 cm2j 31556 bnj544 34891 btwnconn1lem4 36085 relowlssretop 37358 dalem53 39726 dalem54 39727 paddasslem14 39834 mzpcong 42968 itscnhlc0xyqsol 48758 |
| Copyright terms: Public domain | W3C validator |