MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1151 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an1  1163  syl3anl1  1414  syl3anr1  1418  fnsuppres  8190  dif1en  9174  elfiun  9442  elioc2  13426  elico2  13427  elicc2  13428  dvdsleabs2  16331  subrngringnsg  20513  cphipval  25195  spthonpthon  29733  uhgrwkspth  29737  usgr2wlkspth  29741  upgriseupth  30188  cm2j  31601  bnj544  34925  btwnconn1lem4  36108  relowlssretop  37381  dalem53  39744  dalem54  39745  paddasslem14  39852  mzpcong  42996  itscnhlc0xyqsol  48745
  Copyright terms: Public domain W3C validator