MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1151 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an1  1163  syl3anl1  1414  syl3anr1  1418  fnsuppres  8147  dif1en  9101  elfiun  9357  elioc2  13346  elico2  13347  elicc2  13348  dvdsleabs2  16258  subrngringnsg  20473  cphipval  25176  spthonpthon  29731  uhgrwkspth  29735  usgr2wlkspth  29739  upgriseupth  30186  cm2j  31599  bnj544  34877  btwnconn1lem4  36071  relowlssretop  37344  dalem53  39712  dalem54  39713  paddasslem14  39820  mzpcong  42954  itscnhlc0xyqsol  48747
  Copyright terms: Public domain W3C validator