Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
4 | 1, 2, 3 | 3anim123i 1150 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: syl3an1 1162 syl3anl1 1411 syl3anr1 1415 fnsuppres 7996 elfiun 9165 elioc2 13139 elico2 13140 elicc2 13141 dvdsleabs2 16017 cphipval 24403 spthonpthon 28113 uhgrwkspth 28117 usgr2wlkspth 28121 upgriseupth 28565 cm2j 29976 bnj544 32868 btwnconn1lem4 34386 relowlssretop 35528 dalem53 37733 dalem54 37734 paddasslem14 37841 mzpcong 40789 itscnhlc0xyqsol 46078 |
Copyright terms: Public domain | W3C validator |