MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1151 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an1  1163  syl3anl1  1414  syl3anr1  1418  fnsuppres  8124  dif1en  9075  elfiun  9320  elioc2  13312  elico2  13313  elicc2  13314  dvdsleabs2  16223  subrngringnsg  20438  cphipval  25141  spthonpthon  29696  uhgrwkspth  29700  usgr2wlkspth  29704  upgriseupth  30151  cm2j  31564  bnj544  34861  btwnconn1lem4  36068  relowlssretop  37341  dalem53  39708  dalem54  39709  paddasslem14  39816  mzpcong  42949  itscnhlc0xyqsol  48754
  Copyright terms: Public domain W3C validator