![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
4 | 1, 2, 3 | 3anim123i 1148 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: syl3an1 1160 syl3anl1 1409 syl3anr1 1413 fnsuppres 8194 dif1en 9187 elfiun 9463 elioc2 13432 elico2 13433 elicc2 13434 dvdsleabs2 16306 subrngringnsg 20528 cphipval 25256 spthonpthon 29682 uhgrwkspth 29686 usgr2wlkspth 29690 upgriseupth 30134 cm2j 31547 bnj544 34749 btwnconn1lem4 35924 relowlssretop 37080 dalem53 39434 dalem54 39435 paddasslem14 39542 mzpcong 42664 itscnhlc0xyqsol 48186 |
Copyright terms: Public domain | W3C validator |