| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an1 1163 syl3anl1 1414 syl3anr1 1418 fnsuppres 8170 dif1en 9124 elfiun 9381 elioc2 13370 elico2 13371 elicc2 13372 dvdsleabs2 16282 subrngringnsg 20462 cphipval 25143 spthonpthon 29681 uhgrwkspth 29685 usgr2wlkspth 29689 upgriseupth 30136 cm2j 31549 bnj544 34884 btwnconn1lem4 36078 relowlssretop 37351 dalem53 39719 dalem54 39720 paddasslem14 39827 mzpcong 42961 itscnhlc0xyqsol 48754 |
| Copyright terms: Public domain | W3C validator |