MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3anim1i Structured version   Visualization version   GIF version

Theorem 3anim1i 1152
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.)
Hypothesis
Ref Expression
3animi.1 (𝜑𝜓)
Assertion
Ref Expression
3anim1i ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))

Proof of Theorem 3anim1i
StepHypRef Expression
1 3animi.1 . 2 (𝜑𝜓)
2 id 22 . 2 (𝜒𝜒)
3 id 22 . 2 (𝜃𝜃)
41, 2, 33anim123i 1151 1 ((𝜑𝜒𝜃) → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl3an1  1163  syl3anl1  1414  syl3anr1  1418  fnsuppres  8170  dif1en  9124  elfiun  9381  elioc2  13370  elico2  13371  elicc2  13372  dvdsleabs2  16282  subrngringnsg  20462  cphipval  25143  spthonpthon  29681  uhgrwkspth  29685  usgr2wlkspth  29689  upgriseupth  30136  cm2j  31549  bnj544  34884  btwnconn1lem4  36078  relowlssretop  37351  dalem53  39719  dalem54  39720  paddasslem14  39827  mzpcong  42961  itscnhlc0xyqsol  48754
  Copyright terms: Public domain W3C validator