![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl3an1 1163 syl3anl1 1412 syl3anr1 1416 fnsuppres 8232 dif1en 9226 elfiun 9499 elioc2 13470 elico2 13471 elicc2 13472 dvdsleabs2 16360 subrngringnsg 20579 cphipval 25296 spthonpthon 29787 uhgrwkspth 29791 usgr2wlkspth 29795 upgriseupth 30239 cm2j 31652 bnj544 34870 btwnconn1lem4 36054 relowlssretop 37329 dalem53 39682 dalem54 39683 paddasslem14 39790 mzpcong 42929 itscnhlc0xyqsol 48499 |
Copyright terms: Public domain | W3C validator |