Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version |
Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
Ref | Expression |
---|---|
3animi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
4 | 1, 2, 3 | 3anim123i 1149 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl3an1 1161 syl3anl1 1410 syl3anr1 1414 fnsuppres 7978 elfiun 9119 elioc2 13071 elico2 13072 elicc2 13073 dvdsleabs2 15949 cphipval 24312 spthonpthon 28020 uhgrwkspth 28024 usgr2wlkspth 28028 upgriseupth 28472 cm2j 29883 bnj544 32774 btwnconn1lem4 34319 relowlssretop 35461 dalem53 37666 dalem54 37667 paddasslem14 37774 mzpcong 40710 itscnhlc0xyqsol 45999 |
Copyright terms: Public domain | W3C validator |