| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an1 1163 syl3anl1 1414 syl3anr1 1418 fnsuppres 8147 dif1en 9101 elfiun 9357 elioc2 13346 elico2 13347 elicc2 13348 dvdsleabs2 16258 subrngringnsg 20473 cphipval 25176 spthonpthon 29731 uhgrwkspth 29735 usgr2wlkspth 29739 upgriseupth 30186 cm2j 31599 bnj544 34877 btwnconn1lem4 36071 relowlssretop 37344 dalem53 39712 dalem54 39713 paddasslem14 39820 mzpcong 42954 itscnhlc0xyqsol 48747 |
| Copyright terms: Public domain | W3C validator |