| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3anim1i | Structured version Visualization version GIF version | ||
| Description: Add two conjuncts to antecedent and consequent. (Contributed by Jeff Hankins, 16-Aug-2009.) |
| Ref | Expression |
|---|---|
| 3animi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3anim1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3animi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 22 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | id 22 | . 2 ⊢ (𝜃 → 𝜃) | |
| 4 | 1, 2, 3 | 3anim123i 1151 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3an1 1163 syl3anl1 1414 syl3anr1 1418 fnsuppres 8190 dif1en 9174 elfiun 9442 elioc2 13426 elico2 13427 elicc2 13428 dvdsleabs2 16331 subrngringnsg 20513 cphipval 25195 spthonpthon 29733 uhgrwkspth 29737 usgr2wlkspth 29741 upgriseupth 30188 cm2j 31601 bnj544 34925 btwnconn1lem4 36108 relowlssretop 37381 dalem53 39744 dalem54 39745 paddasslem14 39852 mzpcong 42996 itscnhlc0xyqsol 48745 |
| Copyright terms: Public domain | W3C validator |