| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod1i1 | Structured version Visualization version GIF version | ||
| Description: Version of modular law pmod1i 39887 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
| atmod.l | ⊢ ≤ = (le‘𝐾) |
| atmod.j | ⊢ ∨ = (join‘𝐾) |
| atmod.m | ⊢ ∧ = (meet‘𝐾) |
| atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atmod1i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
| 2 | simpr2 1196 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 3 | simpr1 1195 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | |
| 4 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 6 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | eqid 2731 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | pmapjat2 39893 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) |
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) |
| 11 | 4, 6 | atbase 39328 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 12 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 13 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 14 | 4, 12, 5, 13, 7, 8 | hlmod1i 39895 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
| 15 | 11, 14 | syl3anr1 1418 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
| 16 | 10, 15 | mpan2d 694 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑃 ≤ 𝑌 → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
| 17 | 16 | 3impia 1117 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌))) |
| 18 | 17 | eqcomd 2737 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 lecple 17163 joincjn 18212 meetcmee 18213 Atomscatm 39302 HLchlt 39389 pmapcpmap 39536 +𝑃cpadd 39834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-proset 18195 df-poset 18214 df-plt 18229 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-p0 18324 df-lat 18333 df-clat 18400 df-oposet 39215 df-ol 39217 df-oml 39218 df-covers 39305 df-ats 39306 df-atl 39337 df-cvlat 39361 df-hlat 39390 df-psubsp 39542 df-pmap 39543 df-padd 39835 |
| This theorem is referenced by: atmod1i1m 39897 atmod2i1 39900 atmod3i1 39903 atmod4i1 39905 dalawlem6 39915 dalawlem11 39920 dalawlem12 39921 cdleme11g 40304 cdlemednpq 40338 cdleme20c 40350 cdleme22e 40383 cdleme22eALTN 40384 cdleme35c 40490 |
| Copyright terms: Public domain | W3C validator |