|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod1i1 | Structured version Visualization version GIF version | ||
| Description: Version of modular law pmod1i 39850 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) | 
| Ref | Expression | 
|---|---|
| atmod.b | ⊢ 𝐵 = (Base‘𝐾) | 
| atmod.l | ⊢ ≤ = (le‘𝐾) | 
| atmod.j | ⊢ ∨ = (join‘𝐾) | 
| atmod.m | ⊢ ∧ = (meet‘𝐾) | 
| atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| Ref | Expression | 
|---|---|
| atmod1i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
| 2 | simpr2 1196 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 3 | simpr1 1195 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | |
| 4 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 6 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | eqid 2737 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 8 | eqid 2737 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
| 9 | 4, 5, 6, 7, 8 | pmapjat2 39856 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) | 
| 10 | 1, 2, 3, 9 | syl3anc 1373 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) | 
| 11 | 4, 6 | atbase 39290 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) | 
| 12 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
| 13 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 14 | 4, 12, 5, 13, 7, 8 | hlmod1i 39858 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) | 
| 15 | 11, 14 | syl3anr1 1418 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) | 
| 16 | 10, 15 | mpan2d 694 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑃 ≤ 𝑌 → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) | 
| 17 | 16 | 3impia 1118 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌))) | 
| 18 | 17 | eqcomd 2743 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 meetcmee 18358 Atomscatm 39264 HLchlt 39351 pmapcpmap 39499 +𝑃cpadd 39797 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-psubsp 39505 df-pmap 39506 df-padd 39798 | 
| This theorem is referenced by: atmod1i1m 39860 atmod2i1 39863 atmod3i1 39866 atmod4i1 39868 dalawlem6 39878 dalawlem11 39883 dalawlem12 39884 cdleme11g 40267 cdlemednpq 40301 cdleme20c 40313 cdleme22e 40346 cdleme22eALTN 40347 cdleme35c 40453 | 
| Copyright terms: Public domain | W3C validator |