Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod1i1 | Structured version Visualization version GIF version |
Description: Version of modular law pmod1i 37904 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atmod1i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝐾 ∈ HL) | |
2 | simpr2 1195 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
3 | simpr1 1194 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑃 ∈ 𝐴) | |
4 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | atmod.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
6 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | eqid 2736 | . . . . . 6 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
8 | eqid 2736 | . . . . . 6 ⊢ (+𝑃‘𝐾) = (+𝑃‘𝐾) | |
9 | 4, 5, 6, 7, 8 | pmapjat2 37910 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) |
10 | 1, 2, 3, 9 | syl3anc 1371 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) |
11 | 4, 6 | atbase 37345 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
12 | atmod.l | . . . . . 6 ⊢ ≤ = (le‘𝐾) | |
13 | atmod.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
14 | 4, 12, 5, 13, 7, 8 | hlmod1i 37912 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
15 | 11, 14 | syl3anr1 1416 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑃 ≤ 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 ∨ 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃‘𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
16 | 10, 15 | mpan2d 692 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑃 ≤ 𝑌 → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌)))) |
17 | 16 | 3impia 1117 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = (𝑃 ∨ (𝑋 ∧ 𝑌))) |
18 | 17 | eqcomd 2742 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 lecple 17014 joincjn 18074 meetcmee 18075 Atomscatm 37319 HLchlt 37406 pmapcpmap 37553 +𝑃cpadd 37851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-proset 18058 df-poset 18076 df-plt 18093 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-p0 18188 df-lat 18195 df-clat 18262 df-oposet 37232 df-ol 37234 df-oml 37235 df-covers 37322 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 df-psubsp 37559 df-pmap 37560 df-padd 37852 |
This theorem is referenced by: atmod1i1m 37914 atmod2i1 37917 atmod3i1 37920 atmod4i1 37922 dalawlem6 37932 dalawlem11 37937 dalawlem12 37938 cdleme11g 38321 cdlemednpq 38355 cdleme20c 38367 cdleme22e 38400 cdleme22eALTN 38401 cdleme35c 38507 |
Copyright terms: Public domain | W3C validator |