Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod1i1 Structured version   Visualization version   GIF version

Theorem atmod1i1 37640
Description: Version of modular law pmod1i 37631 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod1i1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑌) → (𝑃 (𝑋 𝑌)) = ((𝑃 𝑋) 𝑌))

Proof of Theorem atmod1i1
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝐾 ∈ HL)
2 simpr2 1197 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
3 simpr1 1196 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → 𝑃𝐴)
4 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
5 atmod.j . . . . . 6 = (join‘𝐾)
6 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
7 eqid 2739 . . . . . 6 (pmap‘𝐾) = (pmap‘𝐾)
8 eqid 2739 . . . . . 6 (+𝑃𝐾) = (+𝑃𝐾)
94, 5, 6, 7, 8pmapjat2 37637 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋)))
101, 2, 3, 9syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋)))
114, 6atbase 37072 . . . . 5 (𝑃𝐴𝑃𝐵)
12 atmod.l . . . . . 6 = (le‘𝐾)
13 atmod.m . . . . . 6 = (meet‘𝐾)
144, 12, 5, 13, 7, 8hlmod1i 37639 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐵𝑋𝐵𝑌𝐵)) → ((𝑃 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌))))
1511, 14syl3anr1 1418 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → ((𝑃 𝑌 ∧ ((pmap‘𝐾)‘(𝑃 𝑋)) = (((pmap‘𝐾)‘𝑃)(+𝑃𝐾)((pmap‘𝐾)‘𝑋))) → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌))))
1610, 15mpan2d 694 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵)) → (𝑃 𝑌 → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌))))
17163impia 1119 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑌) → ((𝑃 𝑋) 𝑌) = (𝑃 (𝑋 𝑌)))
1817eqcomd 2745 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑌) → (𝑃 (𝑋 𝑌)) = ((𝑃 𝑋) 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5069  cfv 6400  (class class class)co 7234  Basecbs 16790  lecple 16839  joincjn 17848  meetcmee 17849  Atomscatm 37046  HLchlt 37133  pmapcpmap 37280  +𝑃cpadd 37578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5195  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3711  df-csb 3828  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4836  df-iun 4922  df-iin 4923  df-br 5070  df-opab 5132  df-mpt 5152  df-id 5471  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-1st 7782  df-2nd 7783  df-proset 17832  df-poset 17850  df-plt 17866  df-lub 17882  df-glb 17883  df-join 17884  df-meet 17885  df-p0 17961  df-lat 17968  df-clat 18035  df-oposet 36959  df-ol 36961  df-oml 36962  df-covers 37049  df-ats 37050  df-atl 37081  df-cvlat 37105  df-hlat 37134  df-psubsp 37286  df-pmap 37287  df-padd 37579
This theorem is referenced by:  atmod1i1m  37641  atmod2i1  37644  atmod3i1  37647  atmod4i1  37649  dalawlem6  37659  dalawlem11  37664  dalawlem12  37665  cdleme11g  38048  cdlemednpq  38082  cdleme20c  38094  cdleme22e  38127  cdleme22eALTN  38128  cdleme35c  38234
  Copyright terms: Public domain W3C validator