|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pm3.13 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.13 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm3.13 | ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.11 994 | . 2 ⊢ (¬ (¬ 𝜑 ∨ ¬ 𝜓) → (𝜑 ∧ 𝜓)) | |
| 2 | 1 | con1i 147 | 1 ⊢ (¬ (𝜑 ∧ 𝜓) → (¬ 𝜑 ∨ ¬ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 | 
| This theorem is referenced by: ifcomnan 4581 suc11 6490 nn0xmulclb 32776 naim1 36391 naim2 36392 tsbi1 38141 vk15.4j 44553 vk15.4jVD 44939 | 
| Copyright terms: Public domain | W3C validator |